Минобрнауки России

Бузулукский гуманитарно-технологический институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования

«Оренбургский государственный университет»

Кафедра технической эксплуатации и ремонта автомобилей

РАБОЧАЯ ПРОГРАММА

ДИСЦИПЛИНЫ

«Б.1.В.ОД.3 Рабочие процессы, конструкция и основы расчета энергетических установок и транспортно-технологического оборудования»

Уровень высшего образования

БАКАЛАВРИАТ

Направление подготовки

<u>23.03.03 Эксплуатация транспортно-технологических машин и комплексов</u> (код и наименование направления подготовки)

<u>Сервис транспортных и технологических машин и оборудования (нефтегазодобыча)</u> (наименование направленности (профиля) образовательной программы)

Тип образовательной программы Программа академического бакалавриата

> Квалификация *Бакалавр*

Форма обучения <u>Заочная</u>

Рабочая программа рассмотрена и утверждена на заседании кафедры Кафедра технической эксплуатации и ремонта автомобилей 20 19 г. протокол № 7 от « 16 » 01 Е.В. Фролова Первый заместитель директора по УР Исполнители: В.В. Трунов Старший преподаватель кафедры ТЭР. расшифровка подписи СОГЛАСОВАНО: Председатель методической комиссии по направлению подготовки 23.03.03 ЭТТМК А.В. Спирин личная подпись расшифровка побписи Заведующий библиотекой Т.А. Лопатина расшифровка подписи

личная подпись

1 Цели и задачи освоения дисциплины

Цель (цели) освоения дисциплины: формирование у будущих бакалавров знаний по теории рабочих процессов, конструированию и расчету различных элементов двигателей внутреннего сгорания (ДВС), экономии топливно-энергетических ресурсов и эффективной защиты окружающей среды для обеспечения эффективности испытаний транспортных и транспортно-технологических машин и оборудования различного назначения, их агрегатов, систем и элементов, а так же применять систему фундаментальных знаний для решения проблем эксплуатации транспортно-технологических машин и комплексов.

Залачи:

- получить представление о сущности и назначении процессов, происходящих в цилиндрах ДВС;
- ознакомить студентов с закономерностями и наиболее эффективными методами превращения химической энергии топлива в механическую в ДВС;
- показать влияние основных конструктивных, эксплуатационных и атмосферно климатических факторов на протекание процессов в ДВС и на формирование внешних показателей работы двигателя;
- расширить представление студентов о современных методах улучшения техникоэкономических и экологических показателей и характеристик двигателя, включая использование средств электроники;
 - выполнять необходимые расчеты, используя современные технические средства.
- идентифицировать, формулировать и решать технические и технологические проблемы эксплуатации двигателей внутреннего сгорания

2 Место дисциплины в структуре образовательной программы

Дисциплина относится к обязательным дисциплинам (модулям) вариативной части блока 1 «Дисциплины (модули)»

Пререквизиты дисциплины: Б.1.Б.12 Теплотехника, Б.1.В.ОД.2 Конструкция и эксплуатационные свойства транспортных и транспортно-технологических машин и оборудования, Б.2.В.П.1 Практика по получению профессиональных умений и опыта профессиональной деятельности, первая производственная практика

Постреквизиты дисциплины: Б.1.Б.25 Основы технологии производства и ремонта транспортных и транспортно-технологических машин и оборудования, Б.1.В.ДВ.9.1 Техническая эксплуатация силовых агрегатов и трансмиссий, Б.1.В.ДВ.10.1 Инструментальный контроль технического состояния транспортных и транспортно-технологических машин и оборудования, Б.2.В.П.2 Технологическая практика

3 Требования к результатам обучения по дисциплине

Процесс изучения дисциплины направлен на формирование следующих результатов обучения

Планируемые результаты обучения по дисциплине,	Формируемые компетенции		
характеризующие этапы формирования компетенций	- oppy 0		
Знать: конструкцию, принцип работы двигателей внутреннего	ПК-20 способность к выполнению в		
сгорания, параметры обеспечивающие безопасную и	составе коллектива исполнителей		
эффективную эксплуатацию с целью обеспечения их	лабораторных, стендовых,		
испытаний в процессе эксплуатации	полигонных, приемо-сдаточных и		
Уметь: изучать и анализировать необходимую информацию,	иных видов испытаний систем и		
технические данные и показатели работы двигателей	средств, находящихся в		
внутреннего сгорания; оценивать последствия отказов узлов и	эксплуатации транспортных и		
агрегатов двигателей	транспортно-технологических		
Владеть: навыками по обеспечению безопасных и	машин и оборудования		
эффективных технологических процессов эксплуатации			

Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций	Формируемые компетенции		
транспортных и транспортно-технологических машин, их узлов			
и агрегатов и технологического оборудования			
Знать: Необходимую информацию, технические данные и	ОПК-3 готовность применять		
показатели работы двигателей внутреннего сгорания	систему фундаментальных знаний		
Уметь: применять систему фундаментальных знаний для	(математических,		
идентификации, формулирования и решения технических и	естественнонаучных, инженерных и		
технологических проблем эксплуатации двигателей	экономических) для идентификации,		
внутреннего сгорания	формулирования и решения		
Владеть: Методиками выполнения теплового расчёта,	технических и технологических		
построения индикаторных диаграмм двигателей внутреннего	проблем эксплуатации транспортно-		
сгорания, рассчёта деталей двигателя на прочность, используя	технологических машин и		
современные технические средства	комплексов		

4 Структура и содержание дисциплины

4.1 Структура дисциплины

Общая трудоемкость дисциплины составляет 5 зачетных единиц (180 академических часов).

	Трудоемкость,			
Вид работы	академических часов			
	7 семестр	всего		
Общая трудоёмкость	180	180		
Контактная работа:	19	19		
Лекции (Л)	8	8		
Практические занятия (ПЗ)	8	8		
Консультации	1	1		
Индивидуальная работа и инновационные формы учебных занятий	1,5	1,5		
Промежуточная аттестация (зачет, экзамен)	0,5	0,5		
Самостоятельная работа:	161	161		
- выполнение курсового проекта (КП);	+			
- самоподготовка (проработка и повторение лекционного материала и				
материала учебников и учебных пособий;				
- подготовка к практическим занятиям;				
- выполнение практических заданий.				
Вид итогового контроля (зачет, экзамен, дифференцированный	экзамен			
зачет)				

Разделы дисциплины, изучаемые в 7 семестре

№ раздела	Наименование разделов	Количество часов				
		всего	аудиторная работа			внеауд.
			Л	П3	ЛР	работа
1	Рабочие процессы и характеристики двигателей	46	5	2	-	39
2	Кинематика и динамика двигателя	51	1	2	-	48
3	Расчёт основных деталей двигателя	51	1	2	-	48
4	Расчёт систем двигателей	32	1	2	-	29
	Итого:	180	8	8		164
	Bcero:	180	8	8		164

4.2 Содержание разделов дисциплины

1 Раздел Рабочие процессы и характеристики двигателей

Краткий исторический очерк и принципы работы двигателей. Теоретические циклы двигателей внутреннего сгорания. Топлива, рабочие тела и их свойства. Расчёт действительного цикла двигателя. Тепловой расчёт и тепловой баланс двигателя. Скоростные характеристики двигателей.

2 Раздел Кинематика и динамика двигателя

Кинематика кривошипно-шатунного механизма. Динамика кривошипно-шатунного механизма. Уравновешивание двигателей

3 Раздел Расчёт основных деталей двигателя

Расчётные режимы. Расчёт поршневой группы. Расчёт шатунной группы. Расчёт коленчатого вала. Расчёт корпусных деталей двигателя. Расчёт механизма газораспределения.

4 Раздел Расчёт систем двигателей

Наддув двигателя. Расчёт элементов системы питания. Расчёт элементов системы смазки. Расчёт элементов системы охлаждения.

4.3 Практические занятия (семинары)

№ занятия	№	Тема	Кол-во
	раздела	1 CMa	часов
2	1	Процессы впуска и газообмена, сжатия, сгорания, расширения,	2
		выпуска	
6	2	Сила давления газов. Силы инерции	2
10	3	Расчёт поршня, поршневого кольца, поршневого пальца	2
17	4	Расчёт жидкостного насоса, радиатора, вентилятора и	2
		поверхности воздушного охлаждения системы смазки	
		Итого:	8

4.4 Курсовой проект (7 семестр)

Тема курсового проекта «Кинематический, динамический и расчёт действительного циклов двигателя внутреннего сгорания».

Примерные варианты исходных данных:

- 1. рядный 4-х цилиндровый бензиновый двигатель, N = 50 кВт при n = 5200;
- 2. рядный 12-х цилиндровый бензиновый двигатель, N = 150 кBT при n = 4200;
- 3. V образный 4-х цилиндровый бензиновый двигатель, N = 75 кBT при n = 2600;
- 4. V образный 6-ти цилиндровый бензиновый двигатель, N = 95 кВт при n = 2200;
- 5. V образного 8-ми цилиндрового бензинового двигателя, N = 250 кBt при n = 2800.

5 Учебно-методическое обеспечение дисциплины

5.1 Основная литература

1 Конструирование двигателей внутреннего сгорания [Электронный ресурс] : учебник / Н.Д. Чайнов [и др.]. — Электрон. дан. — Москва : Машиностроение, 2011. — 496 с. — Режим доступа: https://e.lanbook.com/book/65697

5.2 Дополнительная литература

1 Калимуллин, Р. Ф. Тепловой расчет автомобильных газовых двигателей : Метод.указания для выполнения курсового проекта [Электронный ресурс] / Калимуллин Р. Ф. - ГОУ ОГУ, 2007. – Режим доступа: https://rucont.ru/efd/193104

- 2 Калимуллин, Р. Ф. Стендовые испытания автомобильных двигателей : Метод.указания к лабораторным работам [Электронный ресурс] / Калимуллин Р. Ф., Коваленко С. Ю. ОГУ, 2012. Режим доступа: https://rucont.ru/efd/202414
- 3 Колчин, А.И. Расчет автомобильных и тракторных двигателей [Текст] : учеб. пособие / А.И. Колчин, В.П. Демидов.- 3-е изд., перераб. и доп.. М. : Высшая школа, 2003. 496 с. : ил. Библиогр.: с 493. ISBN 5-06-003828-9.

5.3 Периодические издания

- 1 Вестник Оренбургского государственного университета : журнал. Оренбург : ГОУ ОГУ, 2019.
- 2 Автотранспортное предприятие: журнал. Москва: НПП Транснавигация, Минтранс России, 2019.

5.4 Интернет-ресурсы

- 1 Библиотека системы нормативов NormaCS. Режим доступа: http://www.normacs.ru/;
- 2 Федеральный портал «Российское образование»: [Электронный ресурс] Режим доступа: http://edu.ru;
 - 3 Министерство транспорта Российской Федерации. Режим доступа: http://www.mintrans.ru/.

5.5 Программное обеспечение, профессиональные базы данных и информационные справочные системы современных информационных технологий

Программное обеспечение:

- 1 Microsoft Office;
- 2 Веб-приложение «Универсальная система тестирования БГТИ» (режим доступа: http://ust.bgti.ru);
 - 3 Свободно распространяемый офисный пакет LibreOffice;
 - 4 Яндекс. Браузер.

Профессиональные базы данных:

- 1 eLIBRARY [Электронный ресурс]: научная электронная библиотека / ООО Научная электронная библиотека Режим доступа: https://elibrary.ru
- 2 SCOPUS [Электронный ресурс]: реферативная база данных / компания Elsevier. Режим доступа: https://www.scopus.com
- 3 Web of Science [Электронный ресурс]: реферативная база данных / компания Clarivate Analytics. Режим доступа: http://apps.webofknowledge.com

Информационные справочные системы современных информационных технологий:

- 1 Справочно-правовая система «КонсультантПлюс»
- 2 Кодекс [Электронный ресурс]: электронный фонд правовой и нормативно-технической документации/АО «Кодекс». Санкт-Петербург.- Режим доступа: http://docs.cntd.ru/

6 Материально-техническое обеспечение дисциплины

Учебная аудитория лекционного типа: стационарный мультимедиа-проектор и проекционный экран, переносной ноутбук, кафедра, посадочные места для обучающихся, рабочее место преподавателя, учебная доска.

Учебная аудитория для проведения практических занятий: стационарный мультимедиа-проектор и проекционный экран, переносной ноутбук, кафедра, посадочные места для обучающихся, рабочее место преподавателя, учебная доска.

Компьютерный класс: стационарный мультимедиа-проектор и проекционный экран, оборудование для организации локальной вычислительной сети, программное обеспечение «Универсальная система тестирования БГТИ», персональные компьютеры, рабочее место преподавателя, учебная доска.

Помещения для самостоятельной работы: комплекты ученической мебели, компьютеры с подключением к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду ОГУ, электронные библиотечные системы.

Учебные аудитории для проведения групповых консультаций, текущего контроля и промежуточной аттестации): комплекты ученической мебели, компьютеры с подключением к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду ОГУ, электронные библиотечные системы.

Специальное помещение (учебная аудитория) для курсового проектирования (выполнения курсовой работы).

К рабочей программе прилагаются:

- Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине;
- Методические указания для обучающихся по освоению дисциплины.