Минобрнауки России

Бузулукский гуманитарно-технологический институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования

«Оренбургский государственный университет»

Кафедра педагогического образования

РАБОЧАЯ ПРОГРАММА

дисциплины

«Б1.Д.В.Э.2.1 Теория алгоритмов»

Уровень высшего образования

БАКАЛАВРИАТ

Направление подготовки 44.03.01 Педагогическое образование (код и наименование направления подготовки)

<u>Информатика</u> (наименование направленности (профиля) образовательной программы)

Квалификация <u>Бакалавр</u> Форма обучения <u>Заочная</u>

Рабочая программа рассмотрена и утверждена на заседании кафедры

педагогического	ооразования			
	A	наименование	кафедры	
протокол №	6 OT "10" 01	20 <u>M</u> r.		
Декан факульте	та экономики и права	nodnyco	О.Н.Григорьева расшифровка подписи	
Исполнители: доцент		9	О.А. Степунина	
	должность	подпись	расшифровка подписи	
	должность	подпись	расшифровка подписи	
СОГЛАСОВАН	O:			
	етодической комисси	и по попровлен	HO HO HO HOMODIEN	
		и по направлен	70	
код наимено	гическое образование вание личная	подпись	Л.А. Омельяненко расшифровка подписи	
Заведующий би	блиотекой	facel	Т.А. Лопатина	
	личная подп	ись	расшифровка подписи	
		**		

[©] Степунина О.А., 2020 © БГТИ (филиал) ОГУ, 2020

1 Цели и задачи освоения дисциплины

Цель освоения дисциплины:

формирование навыков разработки алгоритмов реальных процессов и ситуаций и использования положений теории алгоритмов в исследовании различных процессов .

Задачи:

- установление взаимосвязи и взаимовлияния математики и информатики;
- знакомство с основными подходами к формализации понятия алгоритма, с основными идеями современной теории алгоритмов;
 - формирование представлений о теоретической базе программирования;
- формирование умения решать практические задачи, требующие разработки алгоритмов и получения точных результатов;
 - развитие логического и алгоритмического стиля мышления.

2 Место дисциплины в структуре образовательной программы

Дисциплина относится к дисциплинам (модулям) по выбору вариативной части блока Д «Дисциплины (модули)»

Пререквизиты дисциплины: Б1.Д.Б.27 Исследование операций

Постреквизиты дисциплины: Отсутствуют

3 Требования к результатам обучения по дисциплине

Процесс изучения дисциплины направлен на формирование следующих результатов обучения

Код и наименование формируемых компетенций	Код и наименование индикатора достижения компетенции	Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций
ПК*-2 Способен применять математический аппарат для решения поставленных задач в профессиональной деятельности	ПК*-2-В-1 Применяет основные приемы использования вычислительных методов при решении различных задач профессиональной деятельности ПК*-2-В-2 Развивает логический и алгоритмический стиль мышления	Знать: -роль и место теории алгоритмов в математике, производственных и социальных процессах; -алгоритмические проблемы в логике и математике; -основные идеи теории алгоритмов и их взаимосвязь с другими математическими теориями и дисциплинами; Уметь: -определять границы использования методов теории алгоритмов; -оценивать различные методы решения задач и выбирать оптимальный; -корректно переводить информацию об объектах с математического языка на язык теории алгоритмов; Владеть: -математическим аппаратом теории алгоритмов; -способами использования алгоритмических процессов в решении задач практического характера;

Код и наименование формируемых компетенций	Код и наименование индикатора достижения компетенции	Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций
		- способностью критического
		осмысления и понимания широты и
		ограниченности применения теории
		алгоритмов к исследованию различных
		процессов.

4 Структура и содержание дисциплины

4.1 Структура дисциплины

Общая трудоемкость дисциплины составляет 3 зачетные единицы (108 академических часов).

Вид работы	Трудоемкость, академических часов		
•	6 семестр	всего	
Общая трудоёмкость	108	108	
Контактная работа:	10,5	10,5	
Лекции (Л)	4	4	
Лабораторные работы (ЛР)	6	6	
Промежуточная аттестация (зачет, экзамен)	0,5	0,5	
Самостоятельная работа:	97,5	97,5	
- выполнение контрольной работы (КонтрР);	+		
- самостоятельное изучение разделов (Формальная арифметика,			
Сложность вычислений и элементы логического			
программирования)			
- самоподготовка (проработка и повторение лекционного			
материала и материала учебников и учебных пособий);			
- подготовка к практическим занятиям.			
Вид итогового контроля (зачет, экзамен, дифференцированный	зачет		
зачет)			

Разделы дисциплины, изучаемые в 6 семестре

		Количество часов				
<u>№</u> раздела	Наименование разделов	всего	аудиторная работа		внеауд.	
		1	Л	П3	ЛР	работа
1	Введение в формальные системы		0,5	-	1	20
2	Алгоритмы как формальные системы	21,5	0,5	1	1	20
3	Машина Тьюринга и вычислимость	22	1	ı	1	20
4	Рекурсивные множества и функции.		1	-	2	18
	Нормальные алгоритмы Маркова.					
5	Сложность вычислений и элементы	22	1	-	1	20
	логического программирования-					
	Итого:		4	1	6	98
	Bcero:	108	4	-	6	98

4.2 Содержание разделов дисциплины

№ 1 Введение в формальные системы

Аксиоматический метод. Понятие о метаязыке и метатеории. Интерпретация формальной системы и теории. Структура языка и выражения. Функторы. Грамматики. Исчисление высказываний: интуитивный подход. Исчисление высказываний: формальный подход. Определение формальной системы

№ 2 Алгоритмы как формальные системы

Интуитивное понятие алгоритма. Формализация и обобщение понятия алгоритма. Марковские алгоритмы. Челночные алгоритмы. Вычислимые функции.

№ 3 Машина Тьюринга и вычислимость

Основы теории формальных грамматик. Регулярные языки и автоматные грамматики. Конечные автоматы. Машина Тьюринга. Вычислимость по Тьюрингу. Тезис Черча

№ 4 Рекурсивные множества и функции. Нормальные алгоритмы Маркова.

Понятие рекурсии. Рекурсивные и рекурсивно-перечислимые множества и предикаты. Примитивно рекурсивные функции. Частично-рекурсивные функции. Теорема о существовании универсальной частично рекурсивной функции. Формальная арифметика. Теорема Геделя о неполноте математики

Нормальные алгоритмы Маркова. Марковские подстановки. Нормальные алгоритмы и их применение к словам. Нормально вычислимые функции. Возможности нормальных алгоритмов. Тезис Маркова

№5 Сложность вычислений и элементы логического программирования

Меры сложности вычислений. Формальные языки класса Р. Недетерминированная машина Тьюринга и язык NP. Понятие NP-полной задачи. Хорновские дизъюнкты. Логические программы

4.3 Лабораторные работы

№ ЛР	№ раздела	Наименование лабораторных работ	Кол-во часов
1	1,2	Формализация и обобщение понятия алгоритма. Марковские	2
		алгоритмы.	
2	3	Основы теории формальных грамматик.	2
3	4	Примитивно рекурсивные функции. Сортировки	2
		Итого:	6

4.4 Контрольная работа (6 семестр)

1. Найдите
$$f(2)$$
, $f(3)$, $f(4)$, $f(5)$ для следующих рекурсивных функций

$$\begin{cases} f(0) = 1\\ f(1) = 3\\ f(k) = 2f(k-1) - f(k-2) \end{cases}$$

2. Найдите явные выражения для
$$f(n)$$
, исключив рекурсию из следующих определений a)
$$\begin{cases} f(0) = 1 \\ f(k) = 2f(k-1) \end{cases}$$
 б)
$$\begin{cases} f(0) = 2 \\ f(k) = \frac{f(k-1)}{k!} \end{cases}$$

- 3. Вычислите значение функции Аккермана: Аккер(3,4)
- 4. Сколько нужно выполнить перемещений в задаче о Ханойской башне, если число дисков равно 10?
- 5. Назвать число выигрышных номеров в задаче Иосифа Флавия для отряда из 48 воинов.
- 6. Рассортируйте последовательность 7, 11, 4, 0, 3, 1, 9, 4, 2, 8, 5, 13, 10, 6, 15, используя:
- а) сортировку выбором;
- б) пузырьковую сортировку;
- в) сортировку слиянием;
- г) быструю сортировку;

- д) сортировку вставками.
- 7. Под «единичной» системой счисления понимается запись неотрицательного целого числа с помощью палочек должно быть выписано столько палочек, какова величина числа;

например: $2 \rightarrow ||, 5 \rightarrow ||||, 0 \rightarrow <$ пустое слово>.

- а) $A = \{a,b,c\}$. Приписать слева к слову P символ b ($P \rightarrow bP$);
- б) $A = \{a,b\}$. Заменить в *P* каждое вхождение *a* на bb.
- 8. Пусть для слов в алфавите $A=\{a,b,c\}$ заданы следующие марковские подстановки: $b \to a$; $c \to b$; $ab \to bc$; $bc \to ca$; $ca \to ab$; $abc \to \Lambda$; $bca \to \Lambda$; $cab \to \Lambda$; $abca \to a$; $bcab \to \Lambda$; $abca \to a$; $bcab \to \Lambda$; $abca \to a$; $abcab \to \Lambda$; $abcab \to \Lambda$

Примените каждую из данных подстановок к слову bcabcabcabca

- 9. Нормальный алгоритм в алфавите $A = \{a, b, 1\}$ задается схемой: $a \to 1$; $b \to 1$. Примените его к слову а) ababaa; б) abaabbb.
- 10. Машина Тьюринга определяется следующей функциональной схемой.

			1,	,
A^Q	q_1	q_2	q_3	q_4
a_0	$q_1 a_0 \Pi$	$q_3a_0\Pi$	q_3a_0 Л	$q_1 a_0 \mathcal{I}$
1	q_3a_0 Л	$q_2 l J I$	$q_4a_0\Pi$	$q_4 l \Pi$
*	q_0a_0	$q_3*\mathcal{I}$		$q_4*\Pi$

Определите, в какое слово перерабатывает машина следующие слова: a) 111*11; б) 11111*111.

5 Учебно-методическое обеспечение дисциплины

5.1 Основная литература

1. Судоплатов, С.В. Математическая логика и теория алгоритмов. Учебник [Электронный ресурс] / HГТУ, 2012. – режим доступа - http://biblioclub.ru/index.php?page=book&id=135676

5.2 Дополнительная литература

- 1. Зюзьков, В.М. Математическая логика и теория алгоритмов : учебное пособие [Электронный ресурс]/ В.М. Зюзьков ; Министерство образования и науки Российской Федерации, Томский Государственный Университет Систем Управления и Радиоэлектроники (ТУСУР). Томск : Эль Контент, 2015. 236 с. ISBN 978-5-4332-0197-2 ; Режим доступа: http://biblioclub.ru/index.php?page=book&id=480935
- 2. Перемитина, Т.О Математическая логика и теория алгоритмов : Методические указания к выполнению типового расчета [Электронный ресурс] /Т.О. Перемитина.. Томск: ТУСУР, 2016. Режим доступа :http://biblioclub.ru/index.php?page=book&id=480886

5.3 Периодические издания

- Информатика и образование : журнал. Москва : "Образование и Информатика"
- Педагогика: журнал. Москва: ООО Педагогика

5.4 Интернет-ресурсы

Сайт Константина Полякова https://www.coursera.org/learn/algorithms-part1 «Coursera», MOOK: «Algorithms, Part 1»; https://www.coursera.org/learn/algorithms-part2 - «Coursera», MOOK: «Algorithms, Part 2»;

5.5 Программное обеспечение, профессиональные базы данных и информационные

справочные системы современных информационных технологий

- Microsoft Office
- Операционная система Windows
- Веб-приложение «Универсальная система тестирования БГТИ»
- https://rupto.ru/ru. Федеральная служба по интеллектуальной собственности
- http://www.edu.ru Федеральный портал «Российское образование»
- https://www.minobrnauki.gov.ru/ Министерство науки и высшего образования Российской Федерации
 - СПС «КонсультантПлюс»
 - Яндекс браузер
 - Mathcad Education-University Edition

6 Материально-техническое обеспечение дисциплины

Перечень основного оборудования учебных аудиторий для проведения занятий лекционного типа: стационарный мультимедиа-проектор и проекционный экран, переносной ноутбук, кафедра, посадочные места для обучающихся, рабочее место преподавателя, учебная доска.

Учебные аудитории для проведения лабораторных занятий используются компьютерные классы, оснащенные стационарным мультимедиа-проектором и проекционным экраном, оборудованием для организации локальной вычислительной сети, персональными компьютерами, рабочим местом преподавателя, учебной доской.

Помещение для самостоятельной работы обучающихся оснащены компьютерной техникой, подключенной к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду ОГУ, электронные библиотечные системы.