Минобрнауки России

Бузулукский гуманитарно-технологический институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Оренбургский государственный университет»

Кафедра общепрофессиональных и технических дисциплин

РАБОЧАЯ ПРОГРАММА

ДИСЦИПЛИНЫ

«Б1.Д.В.13 Переходные процессы в электроэнергетических системах»

Уровень высшего образования

БАКАЛАВРИАТ

Направление подготовки

<u>13.03.02 Электроэнергетика и электротехника</u>
(код и наименование направления подготовки)

Квалификация <u>Бакалавр</u> Форма обучения <u>Заочная</u> Рабочая программа дисциплины «Б1.Д.В.13 Переходные процессы в электроэнергетических системах» рассмотрена и утверждена на заседании кафедры

Кафедра общепрофессиональных и технических дисциплин наименование кафедры

	от "_12_" _02_20 льно-техническо		Senf	Завьялова И.В.
<i>Исполнители:</i> доцент		<u></u>	подпись	расшифровка поописи C. Манакова
	должность	подпись	расшифровн	
	должность	подпись	расшифровка подп	иси
СОГЛАСОВА	НО:			
Заместитель ді	иректора по НМР		Slag -	М. А. Зорина
	Л	ичная подпись	расшиф	ровка подписи
	гроэнергетика и з		влению подготовки	О. С. Манакова расшифровка подписи
Уполномоченн	ный по качеству к	афедры	Ather	Е.В. Фролова
		личная поопись	//pacuu	фровка подписи

[©] Манакова О.С., 2024

[©] БГТИ (филиал) ОГУ, 2024

- © Манакова О.С., 2024 © БГТИ (филиал) ОГУ, 2024

1 Цели и задачи освоения дисциплины

Цель (цели) освоения дисциплины: формирование знаний студентов по расчету и анализу аварийных режимов при эксплуатации электроэнергетических систем (ЭЭС) на основе системного подхода; развитие инженерного мышления, основанное на понимании физики явлений, происходящих в ЭЭС при протекании аварийных процессов; изучение методов расчёта переходных процессов; воспитание способности к физической интерпретации результатов анализа; обучение пониманию и предвидению тяжести протекания переходных процессов в условиях управления режимами ЭЭС.

Задачи:

- формирование знаний о проблемах расчёта и анализа аварийных режимов;
- формирование знаний о видах устойчивости электроэнергетических систем и способы их расчёта;
 - формирование знаний об основах выбора оборудования электроэнергетических систем;
- формирование знаний о проблемах управления режимами работы электроэнергетических систем;
- формирование знаний о требованиях, направленных на улучшения устойчивости энергосистем и мероприятиях по повышению устойчивости;
 - формирование знаний об особенностях анализа режимов работы генераторов и двигателей
- формирование умений производить практические расчёты различных видов короткого замыкания:
- формирование умений выделять практические критерии области устойчивости режимов и оценки запасов устойчивости;
- формирование умений пользоваться формулами и выражениями для определения сопротивлений и ЭДС элементов схем электроэнергетических систем;
- формирование умений применять теоретический аппарат для выявления причины аварийных и нормальных переходных процессов
- формирование навыков разработки мероприятий по повышению устойчивости электроэнергетических систем;
- формирование навыков применения методик выбора и проверки электрооборудования на действие токов короткого замыкания.
- формирование навыков применения методик анализа переходных процессов в электроэнергетических системах.

2 Место дисциплины в структуре образовательной программы

Дисциплина относится к обязательным дисциплинам (модулям) вариативной части блока Д «Дисциплины (модули)»

Пререквизиты дисциплины: Б1.Д.Б.11 Информатика, Б1.Д.Б.14 Физика, Б1.Д.Б.16 Математика, Б1.Д.Б.19 Теоретические основы электротехники, Б1.Д.Б.20 Техническая механика, Б1.Д.В.2 Основы электроэнергетики

Постреквизиты дисциплины: *Б1.Д.В.10* Электрические станции и подстанции, *Б1.Д.В.16* Электроснабжение промышленных предприятий

3 Требования к результатам обучения по дисциплине

Процесс изучения дисциплины направлен на формирование следующих результатов обучения

Код и наименование формируемых компетенций	Код и наименование индикатора достижения компетенции	Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций
ПК*-2 Способен	ПК*-2-В-7 Применяет новые методы	<u>Знать:</u>
анализировать режимы	исследования, режимов работы и расчета	- проблемы расчёта и

Код и наименование формируемых компетенций	Код и наименование индикатора достижения компетенции	Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций
работы систем электроснабжения объектов	параметров основного электроэнергетического оборудования источников и систем электроснабжения ПК*-2-В-8 Применяет методы расчёта переходных процессов в линейных и нелинейных электрических цепях, методы расчёта и проектирования электроэнергетических систем, методы расчёта устойчивости генераторов станций и двигателей нагрузки ПК*-2-В-9 Применяет практические расчёты различных видов короткого замыкания, выделяет практические критерии области устойчивости режимов и оценки запасов устойчивости систем электроснабжения	анализа аварийных режимов; - виды устойчивости электроэнергетических систем и способы их расчёта; основы выбора оборудования электроэнергетических систем Уметь: - производить практические расчёты различных видов короткого замыкания; - выделять практические критерии области устойчивости режимов и оценки запасов устойчивости; - пользоваться формулами и выражениями для определения сопротивлений и ЭДС элементов схем электроэнергетических систем Владеть: - навыками разработки мероприятий по повышению устойчивости электроэнергетических систем; - навыками применения методик выбора и проверки электрооборудования на действие токов короткого замыкания.
ПК*-9 Способен использовать современное программное обеспечение для проектирования и эксплуатации систем электроснабжения	ПК*-9-В-5 Производит практические расчёты различных видов короткого замыкания, выделяет практические критерии области устойчивости режимов и оценки запасов устойчивости	Знать: - проблемы управления режимами работы электроэнергетических систем; - требования, направленные на улучшения устойчивости энергосистем и мероприятия по повышению устойчивости;

Код и наименование формируемых компетенций	Код и наименование индикатора достижения компетенции	Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций
		- особенности анализа режимов работы генераторов и двигателей Уметь: - применять теоретический аппарат для выявления причины аварийных и нормальных переходных процессов Владеть: - навыками применения методик анализа переходных процессов в электроэнергетических системах.

4 Структура и содержание дисциплины

4.1 Структура дисциплины

Общая трудоемкость дисциплины составляет 9 зачетных единиц (324 академических часа).

	Трудоемкость,				
Вид работы	академических часов				
	6 семестр	7 семестр	всего		
Общая трудоёмкость	144	180	324		
Контактная работа:	16,5	29,25	45,75		
Лекции (Л)	6	10	16		
Практические занятия (ПЗ)	8	18	26		
Консультации	1	1	2		
Индивидуальная работа и инновационные формы учебных	1		1		
занятий					
Промежуточная аттестация (зачет, экзамен)	0,5	0,25	0,75		
Самостоятельная работа:	127,5	150,75	278,25		
- выполнение курсовой работы (КР);	+				
- самоподготовка (проработка и повторение лекционного					
материала и материала учебников и учебных пособий;					
- изучение разделов массового открытого онлайн-курса					
«Линейные электрические цепи»;					
- подготовка к лабораторным занятиям;					
- подготовка к практическим занятиям)					
Вид итогового контроля (зачет, экзамен,	экзамен	экзамен			
дифференцированный зачет)					

Разделы дисциплины, изучаемые в 6 семестре

$\mathcal{N}_{\underline{0}}$		I	Количество часог	3
раздела	Наименование разделов	всего	аудиторная работа	внеауд. работа

			Л	ПЗ	ЛР	
1	Общие положения	20	-	2		18
2	Характеристика переходного процесса при	20	2	-		18
	трёхфазном коротком замыкании					
3	Установившийся режим короткого замыкания	20	2	-		18
4	Начальный момент внезапного изменения ре-	19	-	-		19
	жима					
5	Методы расчёта токов трёхфазного короткого	23	2	2		19
	замыкания					
6	Несимметричные короткие замыкания	23	-	4		19
7	Замыкания в распределительных сетях	19	-	-		19
	Итого:	144	6	8		130

Разделы дисциплины, изучаемые в 7 семестре

		Количество часов				
№ раздела	Наименование разделов	всего	аудиторная работа			внеауд.
			Л	П3	ЛР	работа
8	Общие положения	25	-	-		25
9	Статическая устойчивость системы	31	2	4		25
10	Динамическая устойчивость	39	2	12		25
11	Устойчивость узлов нагрузки	30	2	2		26
12	Асинхронные режимы синхронных генераторов	28	2	-		26
13	Мероприятия по улучшению устойчивости	27	2	-		25
	Итого:	180	10	18		152
	Всего:	324	16	26		282

4.2 Содержание разделов дисциплины

6 семестр

1 Обшие положения

Общие сведения об электромагнитных переходных процессах. Общие указания к расчёту коротких замыканий. Система относительных единиц. Составление схем замещения с использованием точного и приближённого приведения.

2 Характеристика переходного процесса при трёхфазном коротком замыкании

Общая характеристика переходного процесса при КЗ в простейших трёхфазных цепях, питающихся от источника неограниченной мощности. Характеристика переходного процесса при КЗ в цепи, питающейся от генератора без APB. Характеристика переходного процесса при КЗ в цепи, питающейся от генератора с APB.

3 Установившийся режим короткого замыкания

Параметры синхронного генератора в установившемся режиме КЗ (отношение короткого замыкания, синхронные реактивности по продольной и поперечной осям X_d и X_q , реактивность рассеяния X_σ , предельный ток возбуждения I_{fiip}). Влияние и учёт нагрузки в установившемся режиме КЗ (при питании нагрузки от генераторов без APB и с APB)

4 Начальный момент внезапного изменения режима

Параметры синхронного генератора в начальный момент переходного процесса. Переходные и сверхпереходные ЭДС и реактивности генератора. Учёт нагрузки в начальный момент переходного процесса

5 Методы расчёта токов трёхфазного короткого замыкания

Метод эквивалентных ЭДС (расчёт установившегося, сверхпереходного и ударного токов КЗ). Метод расчётных кривых (расчёт по общему и индивидуальному изменению токов). Метод типовых кривых;

6 Несимметричные короткие замыкания

Основные положения метода симметричных составляющих. Уравнения Кирхгофа при несимметрии. Сопротивления отдельных элементов токам различных последовательностей (синхронные машины, асинхронные двигатели, обобщённая нагрузка, силовые трансформаторы и автотрансформаторы). Составление схем замещения различных последовательностей (прямой, обратной и нулевой). Соотношения между токами и напряжениями с двух сторон трансформатора со схемой соединения обмоток У/Д-11 и У0/Д-11. Основные соотношения при несимметричных КЗ (однофазном, двухфазном, двухфазном на землю). Правило эквивалентности прямой последовательности. Расчёт несимметричных КЗ методами расчётных кривых и типовых кривых. Соотношения между токами при различных видах КЗ

7 Замыкания в распределительных сетях

Простое замыкание на землю. Компенсация ёмкостного тока замыкания на землю.

7 семестр

8 Общие положения

Общие сведения об электромеханических переходных процессах (основные понятия и определения, классификация переходных процессов). Режимы электрических систем, требования, предъявляемые к режимам. Осуществимость режима, Устойчивость режима. Предел мощности при приёмной системе бесконечной мощности. Роль индуктивного сопротивления системы. Влияние явнополюсности генератора на угловую характеристику мощности. Понятие о статической устойчивости. Понятие о динамической устойчивости;

9 Статическая устойчивость системы

Влияние АРВ генератора на предел передаваемой мощности. Действительный предел передаваемой мощности. Характеристика мощности при сложной связи генератора с приёмной системой

10 Динамическая устойчивость

Схемы замещения при КЗ. Угловая характеристика мощности в переходном режиме. Динамическая устойчивость станции, работающей на шины бесконечной мощности. Правило площадей. Уравнение относительного движения ротора генератора. Метод последовательных интервалов

11 Устойчивость узлов нагрузки

Статическая устойчивость асинхронных двигателей. Вторичные критерии устойчивости нагрузки

12 Асинхронные режимы синхронных генераторов

Понятие асинхронного хода синхронного генератора. Процесс выпадения из синхронизма и возникновение асинхронного хода. Ресинхронизация генераторов

13 Мероприятия по улучшению устойчивости

Улучшение параметров элементов электрической системы. Дополнительные устройства. Режимные мероприятия.

4.3 Практические занятия (семинары)

№ занятия	ванятия № Тема		Кол-во
раздела		1 Cività	часов
		5 семестр	
1	1	Определение параметров схемы замещения с использованием	2
		способов точного и приближённого приведения	
2	5	Расчёт трёхфазного КЗ методом типовых кривых	2
3	6	Составление схем замещения различных последовательностей	2
		для расчёта несимметричных КЗ.	
4	6	Расчёт несимметричных КЗ методом типовых кривых	2
		6 семестр	
5	9	Угловые характеристики мощности простейшей системы.	2
6	9	Угловые характеристики мощности при сложной связи генера-	2
		торов с приёмной системой.	
7,8	10	Составление схемы замещения нормального режима системы,	4

№ занятия	№ раздела	Тема	Кол-во часов
		определение параметров режима, собственных и взаимных проводимостей схемы.	
9	10	Составление схемы замещения аварийного режима системы при несимметричном КЗ. Определение собственных и взаимных проводимостей.	2
10	10	Составление схемы замещения послеаварийного режима и определение проводимостей.	2
11,12	10	Построение угловых характеристик мощности для всех режимов с определением коэффициента запаса динамической устойчивости. Определение предельного угла отключения КЗ и предельного времени отключения КЗ.	4
13	11	Расчёт устойчивости нагрузки с использованием вторичных критериев.	2
		Итого:	26

4.4 Курсовая работа (6 семестр)

Целью выполнения курсовой работы является овладение студентами практических навыков по использованию основных методов расчёта переходных процессов.

Тема контрольной работы: «Расчёт токов короткого замыкания».

В контрольной работе выполняются расчёты как трёхфазного, так и всех видов несимметричного КЗ двумя методами (эквивалентных ЭДС и типовых кривых). Задаются различные комбинации видов КЗ, мест их возникновения и методов их расчёта.

5 Учебно-методическое обеспечение дисциплины

5.1 Основная литература

1 Пилипенко, А. М. Основы анализа переходных процессов в линейных цепях : учебное пособие : [16+] / А. М. Пилипенко ; Южный федеральный университет. — Ростов-на-Дону ; Таганрог : Южный федеральный университет, 2020. — 123 с. : ил., схем. — Режим доступа: https://biblioclub.ru/index.php?page=book&id=598631

2 Аксютин, В. А. Переходные процессы в электрических цепях : учебное пособие : [16+] / В. А. Аксютин ; Новосибирский государственный технический университет. — Новосибирск : Новосибирский государственный технический университет, 2017. — 112 с. : ил., табл., схем., граф. — Режим доступа: https://biblioclub.ru/index.php?page=book&id=576104

5.2 Дополнительная литература

- 1 Булат, В. А. Электромагнитные переходные процессы : учебное пособие / В. А. Булат, А. Г. Губанович, С. М. Силюк. Минск : БНТУ, 2020. 214 с. ISBN 978-985-550-958-6. Текст : электронный // Лань : электронно-библиотечная система. Режим доступа: https://e.lanbook.com/book/247847
- 2 Бобров, А. Э. Электромеханические переходные процессы в системах электроснабжения : учебное пособие / А. Э. Бобров, В. Н. Гиренков, А. М. Дяков. Красноярск : СФУ, 2020. 96 с. ISBN 978-5-7638-4355-2. Текст : электронный // Лань : электронно-библиотечная система. Режим доступа: https://e.lanbook.com/book/181643
- 3 Мамонтов, Е. В. Электромеханические переходные процессы в системах электроснабжения : учебное пособие / Е. В. Мамонтов, Р. Н. Дятлов. Рязань : РГРТУ, 2019. 64 с. Текст : электронный // Лань : электронно-библиотечная система. Режим доступа: https://e.lanbook.com/book/168259

5.3 Периодические издания

1 Электроэнергетика. Сегодня и завтра: информационно-аналитический журнал. – Москва: Деловая пресса.

5.4 Интернет-ресурсы

- 1 Информационный интернет ресурс посвящённый теме электричества, электрической энергии, электротехнике и т.п.- Режим доступа http://www.electrikpro.ru -
- 2 Расширенная интернет версия отраслевого информационно-справочного журнала «Новости электротехники». Режим доступа http://www.news.elteh.ru
 - 3 http://techlibrary.ru/ Некоммерческий проект «Техническая библиотека»;
 - 4 https://elibrary.ru/ Научная электронная библиотека;
 - 5 http://www.edu.ru Федеральный образовательный портал Российское образование
- $6 \, \underline{\text{https://openedu.ru/course/ITMOUniversity/LINCIR}}$ открытые онлайн курсы «Линейные электрические цепи»

5.6 Программное обеспечение, профессиональные базы данных и информационные справочные системы современных информационных технологий

Программное обеспечение, используемые при проведении аудиторных учебных занятий и осуществлении самостоятельной работы студентами:

- 1 операционная система Microsoft Windows;
- 2 Microsoft Office;
- 3 операционная система: Linux RED OS MUROM 7.3.1;
- 3 Веб-приложение «Универсальная система тестирования БГТИ»;
- 4 программа аналогового, цифрового и смешанного моделирования и анализа цепей электронных устройств Micro-Cap 12;
 - 5 Яндекс браузер;
- 6 eLIBRARY [Электронный ресурс]: научная электронная библиотека / ООО Научная электронная библиотека. Режим доступа: https://elibrary.ru;
- 7 Консультант Плюс [Электронный ресурс]: справочно-правовая система / Компания Консультант Плюс. Электрон. дан. Москва. Режим доступа: http://www.consultant.ru/;
 - 8 Электронно-библиотечная система РУКОНТ Режим доступа: https://rucont.ru/;
- 9 Электронно-библиотечная система Университетская библиотека онлайн Режим доступа: https://lib.osu.ru/login?redirect=L2FwaS9zZWFtbGVzcy1hdXRoL29ubGluZQ==
- 10 Электронно-библиотечная система ЛАНЬ Режим доступа: https://lib.osu.ru/login?redirect=L2FwaS9zZWFtbGVzcy1hdXRoL2xhbg==
- 11 Электронно-библиотечная система ZNANIUM.COM Режим доступа: https://lib.osu.ru/login?redirect=L2FwaS9zZWFtbGVzcy1hdXRoL3puYW5pdW0=
- 12 Электронно-библиотечная система "Консультант студента" Режим доступа: https://lib.osu.ru/login?redirect=L2FwaS9zZWFtbGVzcy1hdXRoL2tvbnN1bHRhbnQ=
 - 13 ООО "ИВИС" Режим доступа: https://dlib.eastview.com/browse/udb/12;
 - 14 Библиотека OCR Альдебаран Режим доступа: https://aldebaran.ru/

Материально-техническое обеспечение дисциплины

Учебные аудитории для проведения занятий лекционного типа оснащены: переносными мультимедиа-проекторами и проекционными экранами, ноутбуком; посадочными местами для обучающихся; рабочим местом преподавателя; учебной доской.

Аудитории для самостоятельной работы оснащены: комплектами ученической мебели, компьютерной техникой подключенной к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду ОГУ и филиала, электронным библиотечным системам.

Компьютерный класс оснащен: стационарным мультимедиа-проектором и проекционным экраном, оборудованием для организации локальной вычислительной сети, программным обеспечением

«Универсальный тестовый комплекс», персональными компьютерами, рабочим местом преподавателя, учебной доской.

Учебные аудитории для проведения лабораторных и практических занятий оснащены: переносными мультимедиа-проекторами и проекционными экранами, ноутбуком, посадочными местами для обучающихся, рабочим местом преподавателя, учебной доской, учебными моделями электрических машин.

Учебные аудитории для проведения групповых консультаций, текущего контроля и промежуточной аттестации оснащены: комплектами ученической мебели, компьютерами с подключением к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду ОГУ и филиала, электронным библиотечным системам