Минобрнауки России

Бузулукский гуманитарно-технологический институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования

«Оренбургский государственный университет»

Кафедра общей инженерии

РАБОЧАЯ ПРОГРАММА

ДИСЦИПЛИНЫ

«Б.1.В.ДВ.8.2 Автоматизация технологических процессов»

Уровень высшего образования

БАКАЛАВРИАТ

Направление подготовки <u>44.03.04 Профессиональное обучение (по отраслям)</u> (код и наименование направления подготовки)

<u>Энергетика</u> (наименование направленности (профиля) образовательной программы)

Тип образовательной программы Программа академического бакалавриата

> Квалификация <u>Бакалавр</u> Форма обучения Заочная

Рабочая программа рассмотрена и утверждена на заседании кафедры

Общей инженерии		
	наименование кафедры	
протокол № от " 01	<u>2018</u> г.	
Первый заместитель директора по УР _ наименование факультета	and modules	Е.В. Фролова расшифровка подписи
Исполнители:	All of	А.В. Сидоров
ст. преподаватель	подпись	расшифровка подписи
	and district	nacuudhnoeva nodnucu
должность	подпись	расшифровка подписи
	подпись	расшифровка поописи
СОГЛАСОВАНО:		
СОГЛАСОВАНО: Председатель методической комиссии	по направлению подгото	
СОГЛАСОВАНО:	по направлению подгото	вки
СОГЛАСОВАНО: Председатель методической комиссии 44.03.04 Профессиональное обучение (по направлению подгото	вки О.С. Манакова

[©] Сидоров А.В., 2018 © БГТИ (филиал) ОГУ, 2018

1 Цели и задачи освоения дисциплины

Цель освоения дисциплины: формирование у студентов знаний и умений анализа и синтеза систем автоматизации и контроля технологического процесса.

Задачи:

– ознакомить студентов с современными техническими средствами автоматизации технологических процессов, автоматизированными рабочими местами, автоматизированными проектными бюро и методами их использования.

2 Место дисциплины в структуре образовательной программы

Дисциплина относится к дисциплинам (модулям) по выбору вариативной части блока 1 «Дисциплины (модули)»

Пререквизиты дисциплины: Б.1.Б.6 Математика

Постреквизиты дисциплины: Отсутствуют

3 Требования к результатам обучения по дисциплине

Процесс изучения дисциплины направлен на формирование следующих результатов обучения

Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций	Формируемые компетенции			
<u>Знать:</u>	ПК-25	способность		
- основные компоненты систем автоматизации технологических	организовывать	И		
процессов, построенных на методах аналогий и синтеза;	контролировать			
- подсистемы графического обеспечения технологического	технологический	процесс в		
проектирования	учебных	мастерских,		
Уметь:	организациях и г	редприятиях		
- проектировать структурные схемы систем автоматизации				
технологических процессов;				
– разрабатывать электронные технологические документы				
Владеть:				
- научно-технической лексикой (терминологией) автоматизации				
технологических процессов;				
- общими принципами функционирования автоматических систем				
контроля различного назначения				

4 Структура и содержание дисциплины

4.1 Структура дисциплины

Общая трудоемкость дисциплины составляет 4 зачетных единиц (144 академических часов).

Вид работы	Трудоемкость, академических часов		
~ · ·	7 семестр	всего	
Общая трудоёмкость	144	144	
Контактная работа:	7,5	7,5	
Лекции (Л)	2	2	
Практические занятия (ПЗ)	4	4	
Консультации	1	1	
Промежуточная аттестация (зачет, экзамен)	0,5	0,5	
Самостоятельная работа:	136,5	136,5	
- выполнение контрольной работы (КонтрР);	+		
- самоподготовка (проработка и повторение лекционного материала и			
материала учебников и учебных пособий);			
- подготовка к практическим занятиям.			
Вид итогового контроля (зачет, экзамен, дифференцированный	экзамен		
зачет)			

Разделы дисциплины, изучаемые в 7 семестре

		Количество часов				
№ раздела	Наименование разделов	всего	аудиторная работа			внеауд.
			Л	П3	ЛР	работа
1	Подготовка технологических процессов и	28	0	2	0	26
	производств к автоматизации					
2	Структура и составляющие производственного	28	2	0	0	26
	процесса					
3	Локальные системы автоматизации технологи-	30	0	0	0	30
	ческих процессов					
4	Автоматизация системы управления техноло-	28	0	2	0	26
	гическими процессами					
5	Интеграция систем управления	30	0	0	0	30
	технологическими процессами					
	Итого:	144	2	4	0	138
	Всего:	144	2	4	0	138

4.2 Содержание разделов дисциплины

Раздел 1 Подготовка технологических процессов и производств к автоматизации

Введение. Общие сведения об автоматизации производства. Роль и значения автоматизации производства. Состояние современного промышленного производства. Модернизация и механизация оборудования, диспетчеризация: частичная, комплексная, полная. Автоматические и полуавтоматические системы. Степень автоматизации производственных и технологических процессов. Состояние и перспектива автоматизации производственных и технологических процессов отрасли. Основные понятия и определения. Содержание, цели и задачи дисциплины, ее взаимосвязь с другими дисциплинами

Раздел 2 Структура и составляющие производственного процесса

Особенности современных технологических процессов их классификация и структура. Технологические процессы как объекты управления. Идентификация объектов управления по их переходным характеристикам

Раздел 3 Локальные системы автоматизации технологических процессов

Характеристики и модели оборудования. Автоматизация технологических процессов на базе локальных средств. Выбор, разработка и внедрение локальных автоматических систем

Раздел 4 Автоматизация системы управления технологическими процессами

Категории систем автоматизации. Общие характеристики систем автоматизированного управления технологическими процессами их функции и структуры. Структурные элементы систем автоматизируемых с помощью ЭВМ. Автоматизация управления на базе программно-технических комплексов. Структуры микропроцессорных САУ. Обоснование и разработка функций систем управления, информационного, математического и программного обеспечения. Общие вопросы построений регуляторов систем автоматического управления. Разработка алгоритмов управления технологическими процессами. Прямое цифровое регулирование. Управляющие ЭВМ

Раздел 5 Интеграция систем управления технологическими процессами

Интегрированные системы автоматизации и управления технологическими процессами и производствами. Иерархические системы управления. Микропроцессор как основа нового поколения автоматизированных систем управления технологическими процессами. Этапы разработки и внедрения автоматизированных систем управления технологических процессов и производств

4.3 Практические занятия (семинары)

№ ЛР	№ раздела	Тема	Кол-во часов
1	1	Первичная обработка информации в УВМ. Определение	2
		разрядности представления информации	
2	4	Непосредственное цифровое управление	2
		Итого:	4

4.4 Контрольная работа (7 семестр)

Примерные задания по выполнению контрольной работы:

Задача 1. Определить параметры термоэлектрического датчика (термопары), используемого для определения температуры ковра в прессе: величину термо ЭДС($E_{\, TII}$); перепад температуры($t_{\rm пер}$); температуру горячего спая (t)поправка термо ЭДС ($E_{\rm II}$); расчетная термоЭДС ($E_{\rm IP}$). Если известно, что сопротивление магнитопровода ($R_{\rm M}$) равно 130 Ом, внутреннее сопротивление ($R_{\rm BH}$) равно 10 ОМ, начальная температура (t) равно 15 t0 , напряжение магнитопровода (t1) равно 24 В, ЭДС табличная (t1) равно 6,95 В.

Задача 2. Определить параметры термоэлектрического датчика (термопары), используемого для определения температуры ковра в прессе: величину термо ЭДС($E_{\, TII}$); перепад температуры($t_{\rm пер}$); температуру горячего спая (t)поправка термо ЭДС ($E_{\rm II}$); расчетная термоЭДС ($E_{\rm IP}$). Если известно, что сопротивление магнитопровода ($R_{\rm M}$) равно 100 Ом, внутреннее сопротивление ($R_{\rm BH}$) равно 10 ОМ, начальная температура (t) равно 10 °С , напряжение магнитопровода (t) равно 24 В, ЭДС табличная (t) равно 6,95 В.

Задача 3. Определить параметры термоэлектрического датчика (термопары), используемого для определения температуры ковра в прессе: величину термо ЭДС($E_{\rm тп}$); перепад температуры($t_{\rm пер}$); температуру горячего спая (t)поправка термо ЭДС ($E_{\rm n}$); расчетная термоЭДС ($E_{\rm p}$). Если известно, что сопротивление магнитопровода ($R_{\rm m}$) равно 110 Ом, внутреннее сопротивление ($R_{\rm вн}$) равно 9 ОМ, начальная температура (t) равно 15 t0°С, напряжение магнитопровода (t10°С) равно 24 В, ЭДС табличная (t10°С) равно 6,95 В.

Задача 4. Определить параметры термоэлектрического датчика (термопары), используемого для определения температуры ковра в прессе: величину термо ЭДС($E_{\pi\pi}$); перепад температуры($t_{\pi e p}$); температуру горячего спая (t) поправка термо ЭДС (E_{π}); расчетная термоЭДС (E_{p}). Если известно, что сопротивление магнитопровода (R_{M}) равно 120 Ом, внутреннее сопротивление (R_{BH}) равно 10 ОМ, начальная температура (t) равно 5 0 С, напряжение магнитопровода (U_{M}) равно 24 В, ЭДС табличная ($E_{\text{табл}}$) равно 6,95 В.

Задача 5. Электромагнитное реле включено в цепь системы автоматического управления и предназначено для замыкания и размыкания электрической цепи , использовано в системе блокировок и защиты. Требуется определить параметры обмотки реле (длину окна намотки L_k , внутренний диаметр намотки \mathcal{L}_{BH} , наружный диаметр \mathcal{L}_{Hap} , площадь окна Q_o , средняя длина витка L_{cp} , диаметр обмотки провода d). Если дано наружный размер обмотки b=0,09м, толщина щек катушки $a^{/=}0,002$ м и $b^{/}=0,004$ м ,диаметр сердечника $d_c=0,008$ м , напряжении в обмотке U=12 B, удельное сопротивление материала провода $\rho=0,0175$ Ом *м , намагничивающая сила F=307,6 H, высота окна h = 0,00025 м

5 Учебно-методическое обеспечение дисциплины

5.1 Основная литература

Храменков, В.Г. Автоматизация производственных процессов [Электронный ресурс].: учебник / Томский политехн. ун-т, В.Г. Храменков. – Томск: Изд-во ТПУ, 2011 . – 343 с. : ил. – ISBN 978-5-98298-826-3 . – Режим доступа: https://rucont.ru/efd/278488.

5.2 Дополнительная литература

- 1 Первозванский, А.А. Курс теории автоматического управления [Электронный ресурс].: учебное пособие / А.А. Первозванский. Санкт-Петербург: Лань, 2015. 624 с. Режим доступа: https://e.lanbook.com/book/68460.
- 2. Есаков, В.А. Основы теории и проектирования систем автоматического управления [Электронный ресурс].: учебное пособие / В.А. Есаков, Г.Ф. Земляной, В.Г. Дудко. Москва: МГТУ им. Н.Э. Баумана, 2011. 110 с. Режим доступа: https://e.lanbook.com/book/104598.

5.3 Периодические издания

Высшее образование в России: журнал. – Москва: Московский госуд. университет печати им.И.Федорова, 2018.

5.4 Интернет-ресурсы

- 1 Автоматизация технологических процессов Режим доступа: http://electricalschool.info/automation/1636-avtomatizacija-tekhnologicheskogo.html
 - 2 https://biblioclub.ru/ ЭБС «Университетская библиотека онлайн»;
 - 3 http://techlibrary.ru/ Некоммерческий проект «Техническая библиотека»;
 - 4 https://elibrary.ru/ Научная электронная библиотека;
 - 5 http://katalog.iot.ru/index.php Федеральный портал «Российское образование»;
 - 6 http://window.edu.ru/window/catalog Единое окно доступа к образовательным ресурсам.

5.5 Программное обеспечение, профессиональные базы данных и информационные справочные системы современных информационных технологий

Программное обеспечение, используемые при проведении аудиторных учебных занятий и осуществлении самостоятельной работы студентами:

- 1 Microsoft Windows 7 (лицензия по договору № ПТ/137-09 от 27.10.2009 г.);
- 2 Microsoft Office (лицензия по договору № ПО/8-12 от 28.02.2012 г.);
- 3 Веб-приложение «Универсальная система тестирования БГТИ»;
- 4 Яндекс браузер;

- 5 eLIBRARY [Электронный ресурс]: научная электронная библиотека / ООО Научная электронная библиотека. Режим доступа: https://elibrary.ru;
- 6 Консультант Плюс [Электронный ресурс]: справочно-правовая система / Компания Консультант Плюс. Электрон. дан. Москва, [1992–2018]. Режим доступа: http://www.consultant.ru/;
- 7 http://pravo.gov.ru/ Официальный интернет-портал правовой информации. Государственная система правовой информации.

6 Материально-техническое обеспечение дисциплины

Учебные аудитории для проведения занятий лекционного типа оснащены: переносными мультимедиа-проекторами и проекционными экранами, ноутбуком; посадочными местами для обучающихся; рабочим местом преподавателя; учебной доской.

Аудитории для самостоятельной работы оснащены: комплектами ученической мебели, компьютерной техникой подключенной к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду ОГУ, электронным библиотечным системам.

Компьютерный класс оснащен: стационарным мультимедиа-проектором и проекционным экраном, оборудованием для организации локальной вычислительной сети, программным обеспечением «Универсальный тестовый комплекс», персональными компьютерами, рабочим местом преподавателя, учебной доской.

Учебные аудитории для проведения практических занятий оснащены: переносными мультимедиа-проекторами и проекционными экранами, ноутбуком, посадочными местами для обучающихся, рабочим местом преподавателя, учебной доской.

Учебные аудитории для проведения групповых консультаций, текущего контроля и промежуточной аттестации оснащены: комплектами ученической мебели, компьютерами с подключением к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду ОГУ, электронным библиотечным системам.