Минобрнауки России

Бузулукский гуманитарно-технологический институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Оренбургский государственный университет»

Кафедра общепрофессиональных и технических дисциплин

РАБОЧАЯ ПРОГРАММА

ДИСЦИПЛИНЫ

«Б1.Д.Б.19 Теоретические основы электротехники»

Уровень высшего образования

БАКАЛАВРИАТ

> Квалификация <u>Бакалавр</u> Форма обучения <u>Очная</u>

Рабочая программа дисциплины «Б1,Д.Б.19 Теоретические основы электротехники» рассмотрена и утверждена на заседании кафедры

<u>Кафедра общепрофессиональных и технических дисциплин</u> наименование кафедры

протокол № 6	5_от "_12_" _02_20	24 г.		
Декан строит	гельно-техническог	го факультета	Souf noonuce	Завьялова И.В. расшифровка подписи
Исполнителі	ı:			
доцент		7	75	О. С. Манакова
	должность	подпись	расшифр	овка подписи
-	должность	подпись	расшифровка по	ддиси
СОГЛАСОВ	АНО:			
	директора по НМР		Slag-	М. А. Зорина
	л	ичная подпись	расш	ифровка подписи
Председатели 13.03.02 Эле	ь методической ко ктроэнергетика и э	миссии по напр электротехника	авлению подготов	О. С. Манакова
Уполномочен	ный по качеству к	, , , , , , , , , , , , , , , , , , ,	Ether	расшифровка подтиси Е.В. Фролова

1 Цели и задачи освоения дисциплины

Цель (цели) освоения дисциплины: формирование соответствующего физикоматематического аппарата, методов анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач; формирование и использования методов анализа и моделирования электрических цепей и электрических машин.

Задачи:

- формирование знаний о математическом аппарате аналитической геометрии, линейной алгебры, дифференциальном и интегральном исчислении функции одной переменной, методах анализа и моделирования линейных и нелинейных цепей постоянного и переменного тока, методах расчета переходных процессов в электрических цепях постоянного и переменного тока, теории электромагнитного поля и цепей с распределенными параметрами.
- формирование умений применять математический аппарат теории функции нескольких переменных, теории функций комплексного переменного, теории рядов, теории дифференциальных уравнений, использовать методы расчета переходных процессов в электрических цепях постоянного и переменного тока, применять теорию электромагнитного поля и цепей с распределенными параметрами.
- формирование навыков использования физических законов механики, молекулярной физики, термодинамики, электричества и магнетизма для решения типовых задач, анализа и моделирования линейных и нелинейных цепей постоянного и переменного тока, расчета переходных процессов в электрических цепях постоянного и переменного тока, навыков использования теории электромагнитного поля и цепей с распределенными параметрами.

2 Место дисциплины в структуре образовательной программы

Дисциплина относится к базовой части блока Д «Дисциплины (модули)»

Пререквизиты дисциплины: Б1.Д.Б.11 Информатика, Б1.Д.Б.14 Физика

Постреквизиты дисциплины: E1.Д.E.18 Основы электроизмерений, E1.Д.E.21 Электрические машины, E1.Д.E.22 Электрические и электронные аппараты, E1.Д.E.23 Электроника, E1.Д.B.2 Основы электроэнергетики, E1.D.E.3 Введение в специальность, E1.D.E.5 Электробезопасность, E1.D.E.5 Компьютерное моделирование в профессиональной деятельности, E1.D.E.7 Электроэнергетические системы и сети, E1.D.E.8 Автоматизированный электропривод, E1.D.E.13 Переходные процессы в электроэнергетических системах, E1.D.E.14 Техника высоких напряжений, E1.D.E.15 Эксплуатационный контроль и техническая диагностика электрооборудования, E1.D.E.17 Электромагнитная совместимость в электроэнергетике, E1.D.E.9.2.1 Энергосбережение в энергетике

3 Требования к результатам обучения по дисциплине

Процесс изучения дисциплины направлен на формирование следующих результатов обучения

		Планируемые результаты
Код и наименование	Код и наименование индикатора	обучения по дисциплине,
формируемых компетенций	достижения компетенции	характеризующие этапы
		формирования компетенций
ОПК-3 Способен применять	ОПК-3-В-1 Применяет	Знать:
соответствующий физико-	математический аппарат	- математический аппарат
математический аппарат,	аналитической геометрии, линейной	аналитической геометрии,
методы анализа и	алгебры, дифференциального и	линейной алгебры,
моделирования,	интегрального исчисления функции	дифференциального и
теоретического и	одной переменной	интегрального
экспериментального	ОПК-3-В-2 Применяет	исчисления функции
исследования при решении	математический аппарат теории	одной переменной

	T	Т
TC	TC.	Планируемые результаты
Код и наименование	Код и наименование индикатора	обучения по дисциплине,
формируемых компетенций	достижения компетенции	характеризующие этапы
		формирования компетенций
профессиональных задач	функции нескольких переменных,	Уметь:
	теории функций комплексного	- применять
	переменного, теории рядов, теории	математический аппарат
	дифференциальных уравнений	теории функции нескольких
	ОПК-3-В-5 Демонстрирует	переменных,
	понимание физических явлений и	теории функций
	умеет применять физические законы	комплексного
	механики, молекулярной физики,	переменного, теории
	термодинамики, электричества и	рядов, теории
	магнетизма для решения типовых	дифференциальных
	задач	уравнений
		Владеть:
		- навыками применения
		физических законов
		механики, молекулярной
		физики, термодинамики,
		электричества и
		магнетизма для решения
		типовых задач
ОПК-4 Способен	ОПК-4-В-1 Использует методы	Знать:
использовать методы анализа	анализа и моделирования линейных	- методы анализа и
и моделирования	и нелинейных цепей постоянного и	моделирования линейных
электрических цепей и	переменного тока	и нелинейных цепей
электрических машин	ОПК-4-В-2 Использует методы	постоянного и
1	расчета переходных процессов в	переменного тока;
	электрических цепях постоянного и	- методы расчета переходных
	переменного тока	процессов в электрических
	ОПК-4-В-3 Применяет знания	цепях постоянного и
	теории электромагнитного поля и	переменного тока;
	цепей с распределенными	- теорию электромагнитного
	параметрами	поля и цепей с
		распределенными параметрами
		<u>Уметь:</u>
		- применять методы
		расчета переходных
		процессов в
		электрических цепях
		постоянного и
		переменного тока
		- методы расчета переходных
		процессов в электрических
		цепях постоянного и
		переменного тока; - применять теорию
		электромагнитного поля и
		цепей с распределенными
		параметрами
		Владеть:
		- методами анализа и
		моделирования линейных и
		нелинейных цепей постоянного
		и переменного тока;

Код и наименование формируемых компетенций	Код и наименование индикатора достижения компетенции	Планируемые результаты обучения по дисциплине, характеризующие этапы
		формирования компетенций
		- методами расчета
		переходных процессов в
		электрических цепях
		постоянного и переменного
		тока
		- навыками использования
		теории электромагнитного поля
		И
		цепей с распределенными
		параметрами
ОПК-6 Способен проводить	ОПК-6-В-1 Выбирает средства	<u>Знать:</u>
измерения электрических и	измерения, проводит измерения	- средства измерения, методику
неэлектрических величин	электрических и неэлектрических	измерения электрических и
применительно к объектам	величин, обрабатывает результаты	неэлектрических величин
профессиональной	измерений и оценивает их	Уметь:
деятельности	погрешность	- выбирать средства измерения,
		проводить измерения
		электрических и
		неэлектрических величин,
		обрабатывать результаты
		измерений и оценивать их
		погрешность
		Владеть:
		- методикой проведения
		измерений электрических и
		неэлектрических величин
		применительно к объектам
		профессиональной
		деятельности

4 Структура и содержание дисциплины

4.1 Структура дисциплины

Общая трудоемкость дисциплины составляет 11 зачетных единиц (396 академических часов).

Вид работы	Трудоемкость, академических часов				
	2 семестр	3 семестр	всего		
Общая трудоёмкость	180	216	396		
Контактная работа:	67,25	68,5	135,75		
Лекции (Л)	34	34	68		
Практические занятия (ПЗ)	16	16	32		
Лабораторные работы (ЛР)	16	16	32		
Консультации	1	1	2		
Индивидуальная работа и инновационные формы учебных занятий		1	1		
Промежуточная аттестация (зачет, экзамен)	0,25	0,5	0,75		
Самостоятельная работа: - выполнение курсовой работы (КР);	112,75	147,5 +	260,25		

D. C	Трудоемкость,				
Вид работы	академических часов				
	2 семестр	3 семестр	всего		
- самоподготовка (проработка и повторение лекционного					
материала и материала учебников и учебных пособий;					
- изучение разделов массового открытого онлайн-курса					
«Электричество и магнетизм»;					
- подготовка к лабораторным занятиям;					
- подготовка к практическим занятиям;					
- подготовка к рубежному контролю)					
Вид итогового контроля (зачет, экзамен,	экзамен	экзамен			
дифференцированный зачет)					

Разделы дисциплины, изучаемые в 3 семестре

		Количество часов		3		
№ раздела	Наименование разделов	всего	аудиторная работа			внеауд.
			Л	П3	ЛР	работа
1	Основные положения теории	50	10	6	6	28
	электромагнитного поля и их применение к					
	теории электрических цепей. Методы расчёта					
	цепей. Электрические цепи постоянного тока.					
2	Электрические цепи однофазного	48	8	6	6	28
	синусоидального тока.					
3	Трёхфазные цепи	45	8	4	4	29
4	Периодические несинусоидальные токи в	37	8	_	-	29
	электрических цепях					
	Итого:	180	34	16	16	114

Разделы дисциплины, изучаемые в 4 семестре

	Наименование разделов	Количество часов					
<u>№</u> раздела		всего	аудиторная работа			внеауд.	
раздела		всего	Л	П3	ЛР	работа	
5	Четырёхполюсники	37	6	6	-	25	
6	Переходные процессы в линейных	57	6	10	16	25	
	электрических цепях						
7	Нелинейные электрические цепи постоянного и	31	6	-	-	25	
	переменного тока						
8	Магнитные цепи	31	6	-	-	25	
9	Электрические цепи с распределёнными	31	6	-	-	25	
	параметрами						
10	Электромагнитное поле как вид материи	29	4	-	-	25	
	Итого:	216	34	16	16	150	
	Всего:	396	68	32	32	264	

4.2 Содержание разделов дисциплины

1 Основные положения теории электромагнитного поля и их применение к теории электрических цепей. Методы расчёта цепей. Электрические цепи постоянного тока

Основные этапы развития электротехники и ее теоретических основ, отечественная школа теоретической электротехники.

Общая физическая основа задач электромагнитного поля и теории электрических и магнитных цепей. Электрические цепи постоянного тока. Законы Ома и Кирхгофа. Полная система уравнений электрических цепей. Основные уравнения и основанные на них методы расчета: узловых потенциалов, контурных токов, наложения, эквивалентных преобразований, наложения; активного генератора.

2 Электрические цепи однофазного синусоидального тока

Синусоидальные ЭДС, напряжения и токи. Изображение синусоидальных функций времени комплексными числами. Синусоидальный ток в цепи с R, L и C. Законы Ома и Кирхгофа в комплексной форме. Векторные диаграммы. Треугольники сопротивлений и проводимостей.

Активная, реактивная и полная мощности. Треугольник мощностей. Измерение мощности ваттметром. Резонанс при последовательном и параллельном соединении элементов цепи. Резонанс в сложных цепях. Индуктивно-связанные цепи. Взаимная индуктивность, коэффициенты связи. Согласованные и встречные включения. Расчет сложных электрических цепей с взаимной индукцией. Резонанс в индуктивно связанных контурах. Трансформатор в линейном режиме.

3 Трёхфазные цепи

Многофазные цепи и системы и их классификация. Схемы трёхфазных цепей. Фазные и линейные напряжения и токи. Расчеты трехфазных цепей в симметричных и несимметричных режимах со статической нагрузкой.

Мощность в трёхфазных цепях. Измерение мощности трёхфазных цепей.

Аварийные режимы в трехфазных цепях. Построение векторных диаграмм в аварийных режимах. Вращающееся магнитное поле.

Метод симметричных составляющих.

4 Периодические несинусоидальные токи в электрических цепях

Определение коэффициентов ряда Фурье. Особенности расчёта линейных цепей с источниками несинусоидальных напряжений и токов. Электротехнические приборы различных систем.

Активная, реактивная и полная мощности, мощность искажения. Резонанс в цепях с несинусоидальными источниками.

5 Четырехполюсники

Четырехполюсник и его основные уравнения. Определение коэффициентов четырехполюсника. Схемы замещения. Определение параметров схем замещения и их связь с коэффициентами четырехполюсника. Характеристическое сопротивление и постоянная (мера) передачи.

6 Переходные процессы в линейных электрических цепях

Многофазные цепи и системы и их классификация. Схемы трёхфазных цепей. Фазные и линейные напряжения и токи. Расчеты трехфазных цепей в симметричных и несимметричных режимах со статической нагрузкой.

Мощность в трёхфазных цепях. Измерение мощности трёхфазных цепей.

Аварийные режимы в трехфазных цепях. Построение векторных диаграмм в аварийных режимах. Вращающееся магнитное поле.

Метод симметричных составляющих.

7 Нелинейные электрические цепи постоянного и переменного тока

Понятия об элементах и свойствах нелинейных цепей. Классификация нелинейных элементов. Графические, графоаналитические и численные методы расчета при последовательном, параллельном и смешанном соединении элементов.

8 Магнитные цепи

Магнитные свойства веществ. Основные величины, характеризующие магнитные цепи. Аналогия уравнений магнитных и электрических цепей. Закон полного тока.

Расчет магнитных цепей. Расчёты электромагнитных устройств с постоянными магнитными потоками при неразветвленном и разветвлённом сердечнике.

Основные соотношения для трансформатора со стальным сердечником. Векторная диаграмма трансформатора. Феррорезонансы напряжения и тока.

9 Электрические цепи с распределенными параметрами

Уравнения линии с распределенными параметрами. Решение уравнений однородной линии при установившемся синусоидальном режиме.

Бегущие волны в линии. Параметры волн. Линия без искажений. Линия без потерь. Согласованный режим работы линии.

Переходные процессы в цепях с распределенными параметрами.

10 Электромагнитное поле как вид материи. Электростатическое поле.

Составные части электромагнитного поля: электрическое и магнитное поля. Основные дифференциальные физические величины, характеризующие электромагнитное поле.

Основные величины, характеризующие электростатическое поле. Электростатическое поле в веществе. Теорема Гаусса. Уравнения Лапласа и Пуассона

4.3 Лабораторные работы

№ ЛР	№ раздела	Наименование лабораторных работ	Кол-во часов
1,2	1	Исследование разветвленной линейной электрической цепи постоянного тока	4
3,4	2	Исследование неразветвленной линейной электрической цепи переменного тока при последовательном соединении R,L и R,C	4
5,6	2	Исследование резонанса напряжений	4
7,8	3	Исследование трехфазной цепи, соединенной звездой	4
9,10	6	Исследование переходных процессов в цепях первого порядка	4
11,12	6	Изучение обобщенных законов коммутации	4
13,14	6	Апериодический переходный процесс в цепи второго порядка	4
15,16	6	Колебательный переходный процесс в цепи второго порядка	4
		Итого:	32

4.4 Практические занятия (семинары)

№ занятия	№ разде-	Тема	Кол-во ча-
ле занятия	ла	1 CMa	сов
1,2,3	1	Линейные электрические цепи постоянного тока. Расчёт раз-	6
		ветвлённых цепей постоянного тока по законам Кирхгофа.	
4,5,6,7	2	Однофазные электрические цепи синусоидального тока.	6
8,9,10	3	Трехфазные цепи.	4
11,12,13	5	Четырёхполюсники	6
14,15,16	6	Переходные процессы	10
		Итого:	32

4.5 Курсовая работа (3 семестр)

Курсовая работа выполняется в 3 семестре. Задание включает в себя расчеты трехфазной электрической цепи, магнитной цепи, синусоидальной цепи в переходном режиме. Конфигурации электрических схем и ее параметры задаются преподавателем.

5 Учебно-методическое обеспечение дисциплины

5.1 Основная литература

1 Теоретические основы электротехники: учебник: / И. Я. Лизан, К. Н. Маренич, И. В. Ковалева [и др.]. – Москва; Вологда: Инфра-Инженерия, 2021. – 627 с.: ил., табл., схем., граф. – Режим доступа: https://biblioclub.ru/index.php?page=book&id=618546

5.2 Дополнительная литература

- 1 Гутько, Е. С. Теоретические основы электротехники: практикум: учебное пособие / Е. С. Гутько, Т. С. Шмакова. Минск: РИПО, 2022. 108 с.: ил., табл., схем. Режим доступа:: https://biblioclub.ru/index.php?page=book&id=697508
- 2 Теоретические основы электротехники: линейные электрические цепи: учебное пособие: / К. А. Клименко, Д. А. Поляков, И. Л. Захаров, О. П. Куракина; Омский государственный технический университет. Омск: Омский государственный технический университет (ОмГТУ), 2020. 228 с.: ил., табл., схем., граф. Режим доступа: https://biblioclub.ru/index.php?page=book&id=682276
- 3 Гутько, Е. С. Теоретические основы электротехники: курсовое проектирование: учебное пособие / Е. С. Гутько, Т. С. Шмакова. Минск: РИПО, 2021. 152 с.: табл., схем. Режим доступа: https://biblioclub.ru/index.php?page=book&id=697397

5.3 Периодические издания

1 Электроэнергетика. Сегодня и завтра: информационно-аналитический журнал. – Москва: Деловая пресса.

5.4 Интернет-ресурсы

- 1 Информационный интернет ресурс посвящённый теме электричества, электрической энергии, электротехнике и т.п.- Режим доступа http://www.electrikpro.ru -
- 2 Расширенная интернет версия отраслевого информационно-справочного журнала «Новости электротехники». Режим доступа http://www.news.elteh.ru
 - 3 http://techlibrary.ru/ Некоммерческий проект «Техническая библиотека»;
 - 4 https://elibrary.ru/ Научная электронная библиотека;
 - 5 http://www.edu.ru Федеральный образовательный портал Российское образование
- 6 https://www.lektorium.tv/ehlektrichestvo-i-magnetizm открытые онлайн курсы «Электричество и магнетизм»

5.5 Программное обеспечение, профессиональные базы данных и информационные справочные системы современных информационных технологий

Программное обеспечение, используемые при проведении аудиторных учебных занятий и осуществлении самостоятельной работы студентами:

- 1 операционная система Microsoft Windows;
- 2 Microsoft Office;
- 3 операционная система: Linux RED OS MUROM 7.3.1;
- 3 Веб-приложение «Универсальная система тестирования БГТИ»;
- 4 программа аналогового, цифрового и смешанного моделирования и анализа цепей электронных устройств Micro-Cap 12;
 - 5 Яндекс браузер;
- 6 eLIBRARY [Электронный ресурс]: научная электронная библиотека / ООО Научная электронная библиотека. Режим доступа: https://elibrary.ru;
- 7 Консультант Плюс [Электронный ресурс]: справочно-правовая система / Компания Консультант Плюс. Электрон. дан. Москва. Режим доступа: http://www.consultant.ru/

Материально-техническое обеспечение дисциплины

Учебные аудитории для проведения занятий лекционного типа оснащены: переносными мультимедиа-проекторами и проекционными экранами, ноутбуком; посадочными местами для обучающихся; рабочим местом преподавателя; учебной доской.

Аудитории для самостоятельной работы оснащены: комплектами ученической мебели, компьютерной техникой подключенной к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду ОГУ и филиала, электронным библиотечным системам.

Компьютерный класс оснащен: стационарным мультимедиа-проектором и проекционным экраном, оборудованием для организации локальной вычислительной сети, программным обеспечением «Универсальный тестовый комплекс», персональными компьютерами, рабочим местом преподавателя, учебной доской.

Учебные аудитории для проведения лабораторных и практических занятий оснащены: переносными мультимедиа-проекторами и проекционными экранами, ноутбуком, посадочными местами для обучающихся, рабочим местом преподавателя, учебной доской, учебными моделями электрических машин.

Учебные аудитории для проведения групповых консультаций, текущего контроля и промежуточной аттестации оснащены: комплектами ученической мебели, компьютерами с подключением к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду ОГУ и филиала, электронным библиотечным системам..