МИНОБРНАУКИ РОССИИ

Бузулукский гуманитарно-технологический институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Оренбургский государственный университет»

Кафедра промышленного и гражданского строительства

Фонд оценочных средств

по дисциплине «Проектирование фундаментов в региональных грунтовых условиях»

Уровень высшего образования БАКАЛАВРИАТ

Направление подготовки 08.03.01 Строительство (код и наименование направления подготовки)

<u>Промышленное и гражданское строительство</u> (наименование направленности (профиля) образовательной программы)

Квалификация
<u>Бакалавр</u>
Форма обучения
Очно-заочная

Фонд оценочных средств предназначен для контроля знаний обучающихся по направлению подготовки 08.03.01 Строительство по дисциплине «Проектирование фундаментов в региональных грунтовых условиях»

Фонд оценочных средств	обсужден на	васедании кафедры промышленного	V
гражданского строительства «	•	20г., протокол №	
Декан строительно-технологиче	ского факульт	ета	
, ,	1 2	И.В. Завьялова	
	подпись	расшифровка подписи	
Исполнители:			
ст. преподаватель		А.В. Дорошин	
должность	подпись	расшифровка подписи	

Раздел 1 — Перечень компетенций, с указанием этапов их формирования в процессе освоения дисциплины

Код и наименование формируемых компетенций	Код и наименование индикатора достижения компетенции	Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций	Типы контроля	Виды оценочных средств по уровню сложности / шифр раздела в данном документе
ПК*-3 Способен	ПК*-3-В-1 Выбор исходной	Знать:	Тестирование по	Задания репродуктивного
проводить	информации и нормативно-	- особенности работы и	лекционному	уровня, позволяющие оценивать
расчетное	технических документов для	расчета оснований	материалу.	и диагностировать знание
обоснование и	выполнения расчётного	фундаментов промышленных	Устное	фактического материала
конструирование	обоснования проектных	и гражданских зданий	индивидуальное	(базовые понятия, алгоритмы,
строительных	решений здания (сооружения)	возводимых на просадочных	собеседование – опрос.	факты) и умение правильно
конструкций	промышленного и	грунтах;	Письменные	использовать специальные
зданий и	гражданского назначения	- критерии эффективности	контрольные работы	термины и понятия, узнавание
сооружений	ПК*-3-В-2 Выбор	проектных решений	(рубежный контроль).	объектов изучения в рамках
промышленного и	нормативно-технических	фундаментов промышленных		определенного раздела
гражданского	документов,	и гражданских зданий		дисциплины (модуля) /
назначения	устанавливающих требования	возводимых на просадочных грунтах.		Блок А
	к расчётному обоснованию	Уметь:	Выполнение	Задания реконструктивного
	проектного решения здания	- выполнять расчет оснований	письменных	уровня, позволяющие оценивать
	(сооружения) промышленного	фундаментов промышленных	практических работ.	и диагностировать умения
	и гражданского назначения	и гражданских зданий		синтезировать, анализировать,
	ПК*-3-В-3 Сбор нагрузок и	возводимых на		обобщать фактический и
	воздействий на здание	просадочных грунтах по		теоретический материал с
	(сооружение) промышленного	действующим нормативным		формулированием конкретных
	и гражданского назначения	документам;		выводов, установлением
	ПК*-3-В-4 Выбор методики	- разрабатывать чертежи		причинно-следственных связей /
	расчётного обоснования	нулевого цикла фундаментов		Блок Б
	проектного решения	промышленных и	Выполнение	Задания творческого уровня,
	конструкции здания	гражданских зданий	индивидуального	позволяющие оценивать и
	(сооружения) промышленного	возводимых на просадочных	творческого задания.	диагностировать умения, инте-
	и гражданского назначения	грунтах.		грировать знания различных
	ПК*-3-В-5 Выбор параметров	Владеть:		областей, аргументировать
	расчетной схемы здания	- навыками расчета оснований		собственную точку зрения /
	(сооружения), строительной	фундаментов промышленных		Блок С
	конструкции здания	и гражданских зданий;		

Код и наименование формируемых компетенций	Код и наименование индикатора достижения компетенции	Планируемые результаты обучения по дисциплине, характеризующие этапы формирования компетенций	Типы контроля	Виды оценочных средств по уровню сложности / шифр раздела в данном документе
	(сооружения) промышленного и гражданского назначения ПК*-3-B-6 Выполнение расчетов строительной конструкции, здания (сооружения), основания по первой, второй группам предельных состояний	- навыками работы с системами автоматизированного проектирования при разработке чертежей нулевого цикла фундаментов промышленных и гражданских зданий возводимых на просадочных грунтах.		

Раздел 2 – Оценочные средства

Оценочные средства «<u>Блок А</u>» (оценочные средства для диагностирования сформированности уровня компетенций – «знать»)

А.1 Тестовые задания

- 1. Какую деформацию сооружения называют скручиванием?
- Крен торцовой стены.
- Крен торцовых стен в разные стороны.
- Крен фасадной стены.
- Крен фасадной и торцовых стен.
- 2. Для каких целей устраивают приямки?
- Для освещения подвальных помещений.
- Для предотвращения морозного пучения.
- Для обеспечения устойчивости зданий.
- Для подачи грузов в подвальные помещения.
- 3. В каком случае фундамент оборудуется деформационным (осадочным) швом?
 - При устройстве свайных фундаментов.
- При разной высоте частей здания и неоднородных грунтах в пределах длины здания.
 - При строительстве здания на слабых грунтах.
 - При большой длине здания.
- 4. Какие конструкции зданий наиболее чувствительны к неравномерным осадкам?
 - Железобетонные.
 - Разрезные.
 - Балки, плиты.
 - Неразрезные.
- 5. Как определяется глубина заложения фундаментов под внутренними стенами в отапливаемых зданиях?
 - Выбирается произвольно по усмотрению проектировщика и заказчика.

- Назначается по конструктивным соображениям, не менее 0,5 м от спланированной поверхности земли.
 - Должна быть ниже глубины промерзания грунта.
- В зависимости от глубины промерзания грунта и прочностных свойств оснований.
- 6. Как можно определить осадку фундамента с учетом влияния соседних фундаментов?
 - Методом секущих отрезков.
 - Методом угловых точек.
 - Методом последовательного приближения.
 - Методом угловых линий.
 - 7. Какие фундаменты называют ленточными?
 - Из бетонных подушек, по которым уложены фундаментные балки.
 - Подземные сплошные конструкции, на которых расположены стены здания.
 - Из крупных бетонных блоков, уложенных на столбах.
 - Сплошные фундаментные балки, уложенные по верхним частям свай.
 - 8. Каково назначение фундаментальных балок (рандбалок)?
 - Для передачи нагрузки от стен на столбы фундамента.
- Для передачи нагрузки от стен подвала на основание при ленточных фундаментах.
 - Для равномерной передачи нагрузки.
 - Для передачи нагрузки от стен на головы свай.
- 9. К чему может привести превышение предельных деформаций основания фундаментов?
- K возникновению необратимых деформаций грунтов основания без нарушения его сплошности.
- K возникновению деформаций по плоскости сдвига с изменением объема грунта и уменьшением его пористости.
- К аварийному состоянию сооружений, с обрушением несущих надземных конструкций.
- К развитию зон пластических деформаций с выдавливанием грунта из-под подошвы.
 - 10. Какой назначается высота подвальных и цокольных помещений?

- Не менее 2,5 м.
- Не менее 2,5 м.
- Не менее 1,8 м.
- Отметка пола должна быть не ниже половины этажа от уровня спланированной поверхности пола.
 - 11. В каких случаях применяются плитные фундаменты?
 - Могут применяться в любых случаях строительства зданий.
- При строительстве зданий на слабых основаниях, в сейсмических районах, для строительства зданий башенного типа.
- Для строительства зданий башенного типа, в сейсмических районах, на сильных грунтах, у зданий со связевой конструктивной системой.
 - Для строительства каркасных зданий.
 - 12. Какие основания называются искусственными?
- Скальные, крупнообломочные грунты с добавлением искусственных заполнителей.
- Грунты, полученные путем обработки различными методами с целью повышения их несущей способности.
- Упрочненные силикатизацией грунты, расположенные под подошвой фундамента.
 - Грунты, расположенные под подошвой фундамента.
 - 13. Каким образом маркируются фундаментные подушки?
 - ПК 63-16.8 А т.
 - ФЛ L-B.
 - ФБС L-В-Н.
 - ПБ 3.28-12.
- 14. Что называется глубиной заложения фундамента и как ее определяют при проектировании здания?
 - Расстояние от пола первого этажа до подошвы фундамента.
 - Расстояние от уровня спланированной поверхности земли до подошвы.
- Расстояние от уровня спланированной поверхности земли до обреза фундамента.
 - Расстояние от обреза до подошвы фундамента.
 - 15. Для каких целей устраиваются отмостки вокруг здания?

- Для защиты стен фундамента от механического разрушения и грунта от уплотнения.
 - Для отвода поверхностных вод от стен и фундаментов.
 - Для предотвращения промерзания оснований зданий.
 - Для отвода грунтовых и атмосферных вод от стен здания.
 - 16. Каким образом маркируются фундаментные блоки?
 - ПБ 3.28-12.
 - ФЛ L-B.
 - ПК 63-16.8 А т.
 - ФБС L-B-H.
 - 17. Как обеспечивается гидроизоляция подвалов при устройстве дренажа?
 - За счет понижения уровня грунтовых вод.
 - За счет обмазки наружных поверхностей стен подвала.
 - За счет устройства оклеечной гидроизоляции с прижимной стенкой.
- За счет устройства горизонтальной гидроизоляции в конструкции пола и оклеечной гидроизоляции стен.
 - 18. В каком случае ленточные фундаменты в зданиях выполняют с уступами?
 - При строительстве зданий очередями и выполнении пристроек к зданиям.
 - При строительстве зданий на слабых грунтах.
 - В случае устройства подвала в здании.
- Для перехода с одной отметки подошвы фундамента к другой (на косогорах, от наружных стен к внутренним и т. д.).
- 19. Какая вертикальная гидроизоляция делается для стен подвалов при отсутствии грунтовых вод?
 - Оклеечная с прижимной стенкой из кирпича или плит.
 - Цементная штукатурка.
 - Обмазочная битумом за 2 раза, с устройством глиняного замка.
 - Оклеечная без прижимной стенки.
 - 20. Когда применяют столбчатые фундаменты в зданиях?
 - При применении для фундаментов сборных блоков и подушек.
 - Если фундамент имеет равномерно распределенную нагрузку от стен.
 - Когда надо сократить площадь горизонтальной гидроизоляции.

- При небольших нагрузках или сосредоточенном приложении нагрузки от стен, несущего остова и т. п.
 - 21. Что понимается под подошвой фундамента?
 - Плоскость сопряжения со стеной.
 - Толща грунта под фундаментом.
 - Элемент фундамента, обеспечивающий его устойчивость.
 - Горизонтальная плоскость сопряжения с основанием.
 - 22. Для чего предназначены фундаменты зданий?
 - Для повышения несущей способности грунтов оснований.
 - Для устройства подвалов и цокольных этажей.
 - Для обеспечения долговечности и прочности здания.
 - Для передачи нагрузки от несущего остова на основание.
 - 23. Что называется основанием здания?
 - Часть фундамента, опирающаяся на грунт.
 - Расширенная нижняя часть фундамента.
 - Толща грунтов, залегающих под подошвой фундамента.
 - Толща грунтов, окружающих фундамент.
 - 24. Что вызовет недогрузка одного из фундаментов?
 - Повышенный запас прочности.
 - Неравномерную осадку для здания.
 - Развитие предельного сопротивления грунта.
 - Уменьшение расчетного сопротивления грунта.
 - 25. Как конструктивно устраивают приямки подвала и загрузочные люки?
 - На самостоятельном фундаменте.
 - С устройством защитных стенок, устраиваемых на грунте без фундамента.
 - Стены приямка устраиваются с опиранием на плиту фундамента.
 - На консольных балках или плитах, заделанных в стену подвала.
 - 26. Расчетный уровень грунтовых вод должен приниматься:
 - На 20-30 см выше весеннего уровня.
 - На 50-60 см выше весеннего уровня.
 - На 60-70 см выше весеннего уровня.

- На 30-40 см выше весеннего уровня.
- 27. Какие теории применяются при расчете гибких фундаментов:
- Теория упругопластической среды; теория нелинейно-деформируемой среды.
- Теория местных упругих деформаций, основанная на гипотезе Винклера, теория общих упругих деформаций, основанная на гипотезе упругого полупространства.
- Теория фильтрационной консолидации; теория вторичной консолидации; теория ползучести.
- Теория одномерного уплотнения грунта; теория линейно-деформируемых тел; теория упругого слоя ограниченной толщины; теория предельного равновесия.
 - 28. Какая влажность называется оптимальной:
- Влажность, при которой стандартное уплотнение приводит к максимальной плотности скелета грунта.
 - Влажность, которую грунт сохраняет на воздухе в обычных условиях.
- Влажность, при которой стандартный конус погружается в грунт на определенную глубину.
 - Влажность, при которой все поры заполнены водой.
 - 29. Толщина грунтовой подушки:
 - 1-2 м.
 - более 3 м.
 - 1,5-3 м.
 - 1-3 м.
 - 30. Из каких материалов устраивают подушку под фундамент?
 - Крупный щебень.
 - Глина.
 - Песок.
 - Лесс.
 - 31. Для чего предназначена гидроизоляция?
- Для обеспечения водонепроницаемости сооружений, а также для защиты от коррозии.

- Для обеспечения водонепроницаемости сооружений, а также для защиты от коррозии и разрушения материалов фундаментов при физической или химической агрессивности подземных вод.
- Для обеспечения водонепроницаемости сооружений, а также для защиты от разрушения материалов фундаментов при физической или химической агрессивности подземных вод.
 - Для обеспечения водонепроницаемости сооружений.
- 32. Электрохимическое закрепление грунтов используется для оснований с коэффициентом фильтрации K_{Φ} :
 - < 0.1 m/cyt.
 - 1-10 м/сут.
 - -0,1-1 M/cyt.
 - 10 м/сут.
- 33. При более агрессивных водах до устройства глиняного замка поверхность защитной стенки и фундаментов покрывают:
 - Битумной мастикой и изоляцией из битумных рулонных материалов.
 - Изоляцией из битумных рулонных материалов.
 - Глиной.
 - Битумной мастикой.
 - 34. Что такое дренаж?
- Дренаж система дрен и фильтров, которая служит для сбора и отвода подземных вод от сооружения;
- Дренаж система дрен и фильтров, которая служит для перехвата, сбора и отвода подземных вод от сооружения;
- Дренаж система фильтров, которая служит для перехвата, сбора и отвода подземных вод от сооружения.
- 35. Из каких материалов делают гидроизоляционный замок при слабоагрессивных водах?
 - Глина.
 - Битумная мастика.
 - Цементный раствор.
 - Горячий битум.
 - 36. В каких грунтах можно применять цементацию?

- В песках для уменьшения фильтрации через них.
- В рыхлых песках для их уплотнения.
- В лессовых грунтах для устранения просадочных свойств.
- В грунтах с большим коэффициентом фильтрации, а также для заполнения пустот.
 - 37. Какие фундаменты можно отнести к гибким конструкциям?
 - При *h>¾ l*.
 - При h=l.
 - При $h > \frac{1}{3} l$.
 - При h<⅓ l.
- 38. Если уровень грунтовых вод находится ниже пола подвала, то для защиты фундаментов применяют:
 - Горизонтальную гидроизоляцию.
 - Изоляцию от сырости.
 - Гидроизоляцию в виде сплошной оболочки.
 - Вертикальную гидроизоляцию.
 - 39. Пластовый дренаж это:
- Слой фильтрующего материала, уложенный под всем сооружением. Вода из него отводится с помощью обычных трубчатых дрен.
- Траншея, заполненная фильтрующим материалом (гравий, щебень, камень) от дна до уровня подземных вод, предназначен для недолговременной эксплуатации (период работ по нулевому циклу).
 - Слой фильтрующего материала, уложенный под всем сооружением
- Дырчатая труба (перфорированная) с обсыпкой песчано-гравийной смесью или с фильтровым покрытием из волокнистого материала.
 - 40. Теория расчета по методу местных упругих деформаций, это:
 - Теория Горбунова-Посадова.
 - Теория Винклера.
 - Теория Малышева.
 - Теория Жемочкина.
- 41. Если уровень грунтовых вод находится выше отметки пола подвала, то для защиты фундаментов применяют:
 - Горизонтальную гидроизоляцию.

- Гидроизоляцию в виде сплошной оболочки.
- Изоляцию от сырости.
- Вертикальную гидроизоляцию.
- 42. Для каких целей устраивают песчаную подушку под подошвой фундаментов?
 - Для дренажа.
 - Для выравнивания давления под подошвой фундамента.
 - Для снятия напора грунтовых вод.
 - Для замены слабого грунта основания.
 - 43. В чем особенность однорастворного метода силикатизации:
 - Добавление к цементному раствору HCl₂.
 - Добавление к жидкому стеклу CaCl₂.
 - Добавление к жидкому стеклу Н₃РО₄.
 - Добавление к силикатному клею H₂SO₄.
 - 44. Что такое электроосмос и для чего он применяется в грунтах?
- Перемещения связной воды в глинистом грунте под влиянием разности потенциалов при постоянном электрическом токе, приводит к увеличению сил сцепления между частицами.
- Перемещение силикатного раствора в песчаном грунте под влиянием разности потенциалов при переменном электрическом токе, приводит к увеличению прочности грунта.
 - Миграция воды в слабомерзлом грунте под влиянием разности потенциалов.
- Движение воды через поры грунта под влиянием разности потенциалов при постоянном электрическом токе, в водонасыщенных связных грунтах приводит к уменьшению влажности и увеличению плотности.
 - 45. Манжетная технология закрепления оснований, это:
 - Нагнетание цементного раствора в грунт под давлением 2-3 атм.
 - Заполнение грунтовых пор в грунте силикатом натрия с добавлением CaCl₂.
 - Пропитка песка цементным раствором.
 - Нагнетание цементного раствора в грунт под давлением 4-5 атм.
- 46. Выберите условия проверки слабого подстилающего слоя грунта под подошвой фундамента:

$$-\sigma_{zq}+\sigma_{zp}< R$$
.

$$-\sigma_{zq}+\sigma_{zp}>P_{np}$$
.

$$-\sigma_{zq}+\sigma_{zp}>R_{cn}$$
.

$$-\sigma_{zq}+\sigma_{zp}< R_{cn}$$

- 47. В чем особенность расчета гибкого фундамента по методу прямолинейной эпюры?
 - Используется для предварительных расчетов.
 - Уточнение метода Винклера.
 - Используется для упругого полупространства.
 - Используется для окончательных расчетов.
 - 48. Для закрепления лессового грунта используют:
 - Струйную технологию.
 - Термическую обработку грунта.
 - Манжетную технологию.
 - Электроосмос.
 - 49. Для чего применяются песчаные сваи?
 - Для закрепления откосов.
 - Для уплотнения лессовых грунтов.
 - Для укрепления оснований.
 - Для глубинного уплотнения грунтов.
 - 50. Для каких грунтов эффективно уплотнение грунтов трамбовками:
 - Для слабых глинистых грунтов.
 - Для песков пылеватых и крупнообломочных грунтов.
 - Для сыпучих и лессовых.
 - Для супесей и суглинков.
 - 51. Предварительно изготовленные сваи подразделяются на:
 - Стальные.
 - Деревянные.
 - Все вышеперечисленные варианты.
 - Железобетонные.
 - 52. Что такое «отдых» сваи?

- Промежуток времени, при котором необходимо воздержаться от забивки свай, что не было выпора ранее погруженных свай.
- Промежуток времени в течение 10-15 минут, который необходимо выдерживать перед погружением сваи до проектной отметки.
- Промежуток времени, который необходимо выдерживать перед устройством ростверка.
- Временной промежуток при погружении сваи методом забивки для восстановления разрушенной структуры грунта около ее тела.
 - 53. Сваи, изготовляемые в грунте, подразделяются на:
 - Железобетонные.
 - Бетонные и железобетонные.
 - Деревянные.
 - Бетонные.
 - 54. Какие бывают виды свайных фундаментов?
 - Ленточный.
 - Все вышеперечисленные варианты.
 - Сплошное свайное поле.
 - 55. Что такое «кустовой эффект» в свайном фундаменте?
 - Когда куст свайного фундамента образован сваями-стойками.
- Когда в кусте свай расстояние между осями забивных висячих сваями менее
 3d.
- Когда свайный фундамент представляет собой группу свай, объединенную поверху ростверком.
 - Взаимное влияние свай при небольшом расстоянии между ними.
 - 56. Отказ сваи при забивке это:
 - Поломка сваи.
 - Величина погружения сваи от удара молота.
 - Максимальное погружение сваи от удара молота.
 - Отсутствие погружения сваи от удара молота.
 - 57. Сколько времени рекомендуется отводить на «отдых» сваи:
 - 12 суток в песчаных грунтах, до 36 ч в глинах.
 - 1-5 ч в песчаных грунтах, 12 ч глинах.
 - 3-5 суток в песчаных грунтах, до 30 ч в глинах.

- 1 сутки в песчаных грунтах, 36 ч в глинах.
- 58. При расчете осадки свайного фундамента величина α это:
- Среднее значение угла внутреннего трения грунтов вдоль ствола сваи.
- Угол отклонения сваи от вертикали.
- $-\alpha = \varphi_{cp}/2$.
- Угол рассеивания напряжений по длине сваи.
- 59. Из чего состоит свайный фундамент?
- Отдельные сваи, объединенные поверх распределительной плитой.
- Группа свай, объединенных поверх распределительной плитой или балкой.
 - Группа свай.
- Отдельные сваи или группы свай, объединенные поверх распределительной плитой или балкой.
 - 60. В каких условиях может применятся свая Штрауса?
 - В любых геологических и гидрогеологических условиях.
 - Глинистых грунтах.
 - На песчаных грунтах.
 - На карстовых грунтах.
- 61. По какому предельному состоянию рассчитывается свайный фундамент при определении числа свай?
 - По I предельному состоянию.
 - По I и по II предельным состояниям.
 - По III предельному состоянию.
 - По II предельному состоянию.
 - 62. Что называется «отдыхом» сваи?
 - Время, необходимое для восстановления скорости погружения.
 - Время, необходимое для релаксации напряжений.
 - Время, необходимое для восстановления сопротивления.
 - Релаксация несущей способности сваи.
 - 63. Что такое камуфлетная свая?
 - Свая, имеющая расширенную нижнюю часть.
 - Свая, составленная по длине из двух различных материалов.

- Свая, имеющая на конце винтовую лопасть.
- Набивная свая, устраиваемая путем погружения инвентарных труб, нижний конец которых закрыт оставляемым в грунте башмаком, бетонирования полости бетоном с извлечением труб.
 - 64. Что такое отрицательное трение грунта?
- Поверхностное трение грунта по стволу сваи, направленное вниз, возникающее при оседании окружающего сваю грунта.
- Трение, возникающее между окружающим грунтом и грунтовой «рубашки», которая образуется на боковой поверхности сваи.
 - «Сухое» трение вдоль ствола сваи за счет отжатия воды при забивке.
 - Сопротивление выдергиванию свай от сил бокового трения.
 - 65. Когда устраиваются «козловые сваи»:
 - При горизонтальной нагрузке на сваю > 2,0 т.
 - При горизонтальной нагрузке на сваю > 0,5 т.
 - При горизонтальной нагрузке на сваю > 1,5 т.
 - При горизонтальной нагрузке на сваю > 1,0 т.
 - 66. Что означает несущая способность сваи-трения?
- Способность грунта воспринять нагрузку через сваи определенных размеров.
- Величина, соответствующая сопротивлению грунта под нижним концом сваи.
- Величина нагрузки, соответствующая сумме сопротивлений грунта под подошвой и боковой поверхности.
- Величина нагрузки, при которой даже незначительные силовые воздействия приводят к осадке сваи.
 - 67. Расчетная нагрузка, допускаемая на сваю, это:
 - Несущая способность сваи, деленная на коэффициент перегрузки.
 - Несущая способность сваи, деленная на коэффициент надежности.
 - Несущая способность сваи, умноженная на коэффициент надежности.
 - Несущая способность сваи, умноженная на коэффициент перегрузки.
 - 68. Что называется сваей?
- Изготовленный в грунте стержень, предназначенный для передачи нагрузки от сооружения на грунт основания.

- Погруженный в готовом виде или изготовленный в грунте стержень, предназначенный для передачи нагрузки от сооружения на грунт основания и/ или укрепления основания.
- Погруженный в готовом виде стержень, предназначенный для передачи нагрузки от сооружения на грунт основания.
- Погруженный в готовом виде или изготовленный в грунте стержень, предназначенный для передачи нагрузки от сооружения на грунт основания.
 - 69. Что называется «отказом» сваи?
 - Перемещение сваи от одного удара молотом называется отказом сваи.
 - Скорость погружения сваи от первого удара до полного погружения.
 - Прекращение погружения сваи до полного погружения.
 - Разрушение ствола сваи.
 - 70. Какая разница между набивной сваей и сваей, изготовленной в грунте?
 - В условиях работы.
 - Никакой.
 - В условиях погружения.
 - Незначительная.
 - 71. Выберите правильный размер (см) поперечного сечения ж/б сваи:
 - **35.**
 - -32.
 - **–** 15.
 - 45.
 - 72. В каких грунтах отказ сваи больше при прочих равных условиях:
 - Глины.
 - Гравий.
 - Пески.
 - Супеси.
 - 73. Расчет висячей сваи производится по:
 - Прочности грунта.
 - Прочности материала.
 - Величине ее отказа.
 - Прочности грунта и по прочности материала.

- 74. Сваи, выполненные по технологии Atlas, это:
- Сваи с неизвлекаемой оболочкой и теряемым башмаком.
- Безоболочковые набивные сваи.
- Сваи с извлекаемой оболочкой и теряемым башмаком.
- Сваи с неизвлекаемой оболочкой и винтовым наконечником.
- 75. В чем отличие висячей сваи от сваи-стойки?
- В форме острия.
- В условиях погружения.
- В условиях работы.
- В длине.
- 76. Что такое форсированная посадка кессона?
- Осадка кессонной камеры более 15 см.
- Резкое уменьшение на 50 % расчетного давления в рабочей камере.
- Резкое увеличение на 50 % расчетного давления в рабочей камере.
- Резкое увеличение надкессонной кладки.
- 77. Конструкционные материалы для опускных колодцев:
- Металл.
- Дерево.
- Все вышеперечисленные материалы.
- Ж/б.
- 78. В каких грунтах происходит более интенсивное затухание колебаний?
- Более интенсивно происходит в тонкодисперсных грунтах, в грунтах с жесткими структурными связями волны могут распространяться на большие расстояния.
- Более интенсивно происходит в дисперсных грунтах, содержащих от 10 до 50% (по массе) торфа, в крупнообломочных грунтах волны могут распространяться на большие расстояния.
- Более интенсивно происходит в полускальных грунтах, в глинистых грунтах, с показателем текучести $J_L < 0$ волны могут распространяться на большие расстояния.
- Более интенсивно происходит в маловлажных грунтах, в водонасыщенных тонкодисперсных грунтах волны могут распространяться на большие расстояния.

- 79. Достоинства тонкостенных оболочек:
- Индустриальность их изготовления.
- Все вышеперечисленные варианты.
- Высокая сборность и механизация всех работ.
- Лучшее использование прочностных свойств материала фундамента.
- 80. Форма вертикальных сечений монолитных опускных колодцев:
- Коническая ступенчатая.
- Цилиндрическая и коническая.
- Цилиндрическая.
- Коническая.
- 81. Наиболее рациональной является форма сечений опускных колодцев в плане:
 - Прямоугольная.
 - Круглая.
 - С закругленными торцевыми стенками.
 - Прямоугольная с поперечными перегородками.
 - 82. Какая форма сечений опускных колодцев в плане не применяется:
 - Прямоугольная с поперечными перегородками.
 - Круглая.
 - С закругленными торцевыми стенками.
 - Многоугольная.
 - 83. Рационально тонкостенные оболочки применять при:
 - Малых вертикальных и больших горизонтальных нагрузках.
 - Больших вертикальных и малых горизонтальных нагрузках.
 - Больших вертикальных и горизонтальных нагрузках.
 - Больших вертикальных нагрузках.
- 84. Назовите основной принцип проектирования фундамента под механизмы с динамическим воздействием:
 - Ограничение ускорений колебаний.
 - Ограничение глубины заложения.
 - Ограничение амплитуды колебаний.
 - Ограничение осадки.

85. Что такое кессон?

- Опрокинутая вверх дном емкость, в которой разрабатывается грунт при избыточном давлении для предотвращения попадания воды внутрь.
- Тип опускного колодца, который применяется при проходке водонасыщенных и плывунных грунтов.
- Опрокинутый вверх дном ящик, в котором подводная разработка грунта осуществляется грейферами или фрезерно-эжекторными механизмами.
- Тип опускного колодца с изолированной рабочей камерой из которой при производстве работ откачивается воздух.
- 86. Как определить допустимое среднее давление под подошвой фундамента машин?
- Давление должно быть не более 100 кПа, при этом эпюра предельного давления должна быть прямоугольной, в крайнем случае, трапецеидальной.
- Давление должно быть меньше расчетного сопротивления R, вычисленного обычным способом с понижающими коэффициентами, зависящими от вида грунта и вида машины.
- Давление должно быть меньше расчетного сопротивления R, вычисленного по формуле СНиП 2.02.05-87 «Фундаменты машин с динамическими нагрузками».
- Давление должно быть не больше расчетного сопротивления R, вычисленного обычным способом.
 - 87. Конструкции, сооружаемые способом «стена в грунте»:
 - Все вышеперечисленные варианты.
 - Котлованы в городских условиях.
 - Подпорные стенки.
 - Тоннели.
- 88. В зависимости от способа устройства заделки (корня) грунтовые анкера бывают:
 - Все вышеперечисленные варианты.
 - Инъекционными.
 - Буровыми.
 - Засыпными.
 - 89. Какую роль играет фордшахта при устройстве стены в грунте
 - Позволяет увеличить давление глиняного раствора в устье траншеи.
 - Позволяет увеличить давление глиняного раствора внизу траншеи.

- Позволяет снизить давление глиняного раствора внизу траншеи.
- Позволяет снизить давление глиняного раствора в устье траншеи.
- 90. Что такое опускной колодец?
- Фундамент глубокого заложения в виде тонкостенных оболочек.
- Фундамент глубокого заложения в виде глубоких столбов, имеющие большие размеры поперечного сечения, чем сваи, и устраиваемые более сложными технологическими приемами.
- Фундамент глубокого заложения в виде конструкции, выполняемой методом погружения при выемке грунта внутри и наращивания его стенок по мере опускания.
 - Фундамент глубокого заложения в виде сваи оболочки большого диаметра.
- 91. Для каких целей в опускных колодцах устраивается тиксотропная «рубашка»?
 - Для уменьшения плотности грунта.
 - Для увеличения плотности грунта.
 - Для увеличения сил трения.
 - Для снижения сил трения.
 - 92. Что позволяет избежать просадки грунта вокруг опускного колодца?
 - В Сокращение сроков производства работ.
 - Принудительное вдавливание конструкции колодца.
 - Выемка грунта без откачки грунтовых вод.
 - Понижение уровня грунтовых вод.
 - 93. Из сборных опускных колодцев наибольшее распространение получили:
 - Колодцы из пустотелых многоугольных элементов.
 - Колодцы из пустотелых круглых элементов.
- Колодцы из пустотелых прямоугольных элементов и из плоских вертикальных панелей (клепок).
 - Из плоских вертикальных панелей (клепок).
- 94. При производстве работ по выполнению стены в грунте траншея заполняется
 - Раствором бентонитовой глины.
 - Раствором каолиновой глины.
 - Раствором монтморилонитовой глины.

- Водой.
- 95. Величина зоны повышенной опасности на стройплощадке при динамических воздействиях:
 - 20 м.
 - -30 M.
 - -50 M.
 - 40 м.
- 96. При проектировании фундамента под машину с динамическим воздействием задаются:
 - Амплитуда колебаний.
 - Глубина фундамента.
 - Масса фундамента.
 - Площадь фундамента.
 - 97. Что вызывает забивка свай в глинистых грунтах?
 - Проявление тиксотропных свойств.
 - Уменьшение плотности.
 - Разжижение.
 - Увеличение плотности.
 - 98. Что такое виброуплотнение и для каких грунтов оно характерно?
- Это дополнительное уплотнение рыхлых несвязных грунтов при вибрационных или часто повторяющихся ударных нагрузках.
- Это разжижение водонасыщенных песчаных грунтов при высоком уровне динамических воздействий.
- Это доуполотнение лессовых просадочных грунтов при динамическом воздействии на них.
- Это разрушение структуры пластичных глинистых грунтов при динамическом воздействии на них.
 - 99. Оболочки выпускаются секциями:
 - Длиной от 3 до 6 м и наружным диаметром от 3 до 6 м.
 - Длиной от 6 до 12 м и наружным диаметром от 1 до 3 м.
 - Длиной от 1 до 3 м и наружным диаметром от 1 до 3 м.
 - Длиной от 6 до 12м и наружным диаметром до 3.

- 100. Подводные взрывы применяются для уплотнения:
- Глины.
- Макропористых просадочных грунтов.
- Рыхлых песчаных грунтов и макропористых просадочных грунтов.
- Рыхлых песчаных грунтов.
- 101. Для каких целей устраивают песчаную подушку под подошвой фундаментов?
 - Для дренажа.
 - Для выравнивания давления под подошвой фундамента.
 - Для замены слабого грунта основания.
 - Для снятия напора грунтовых вод.
 - 102. За счет энергии взрыва уплотнение происходит примерно на:
 - $h = 0,5 м, h_{\text{общ}} = 4 м.$
 - $h = 0,3 м, h_{\text{общ}} = 1 м.$
 - $h = 0.5 \text{ M}, h_{\text{общ}} = 4 \text{ M}.$
 - $h = 0.30-0.5 м, h_{\text{общ}} = 1-4 м.$
 - 103. Какая влажность называется оптимальной?
- Влажность, при которой стандартное уплотнение приводит к максимальной плотности скелета грунта.
- Влажность, при которой стандартный конус погружается в грунт на определенную глубину.
 - Влажность, которую грунт сохраняет на воздухе в обычных условиях.
 - Влажность, при которой все поры заполнены водой.
 - 104. Грунтовые подушки это:
 - Замена слабого грунта другим.
 - Все варианты не верны.
 - Устройство специальных грунтов.
 - Размещение на слабом грунте другого грунта.

- 105. Какие теории применяются при расчете гибких фундаментов?
- Теория упругопластической среды; теория нелинейно-деформируемой среды.
- Теория местных упругих деформаций, основанная на гипотезе Винклера, теория общих упругих деформаций, основанная на гипотезе упругого полупространства.
- Теория одномерного уплотнения грунта; теория линейно-деформируемых тел; теория упругого слоя ограниченной толщины; теория предельного равновесия.
- Теория фильтрационной консолидации; теория вторичной консолидации; теория ползучести.
 - 106. Меры преобразования строительных свойств основания:
 - Закрепление грунтов.
 - Все выше перечисленные варианты.
 - Конструктивные методы.
 - Уплотнение грунтов.
 - 107. Что такое электроосмос и для чего он применяется в грунтах?
- Движение воды через поры грунта под влиянием разности потенциалов при постоянном электрическом токе, в водонасыщенных связных грунтах он приводит к уменьшению влажности и увеличению плотности.
 - Миграция воды в слабомерзлом грунте под влиянием разности потенциалов.
- Перемещение силикатного раствора в песчаном грунте под влиянием разности потенциалов при переменном электрическом токе, приводит к увеличению прочности грунта.
- Перемещения связной воды в глинистом грунте под влиянием разности потенциалов при постоянном электрическом токе, приводит к увеличению сил сцепления между частицами.
- 108. Песчаные сваи применяются для уплотнения сильно сжимаемых пылевато-глинистых грунтов, рыхлых песков, заторфованных грунтов на глубину до:
 - 12-20 м.
 - 18-20 м.

- 18-40 м.
- 18-30 м.

109. В чем особенность однорастворного метода силикатизации?

- Добавление к цементному раствору HCl₂.
- Добавление к жидкому стеклу Н₃РО₄.
- Добавление к силикатному клею H₂SO₄.
- Добавление к жидкому стеклу CaCl₂.

110. Манжетная технология закрепления оснований – это:

- Нагнетание цементного раствора в грунт под давлением 4-5 атм.
- Заполнение грунтовых пор в грунте силикатом натрия с добавлением CaCl₂.
- Нагнетание цементного раствора в грунт под давлением 2-3 атм.
- Пропитка песка цементным раствором.

111. Для закрепления лессового грунта используют:

- Манжетную технологию.
- Струйную технологию.
- Электроосмос.
- Термическую обработку грунта.

112. Теория расчета по методу местных упругих деформаций:

- Теория Жемочкина.
- Теория Горбунова-Посадова.
- Теория Малышева.
- Теория Винклера.

113. Выберете условия проверки слабого подстилающего слоя грунта под подошвой фундамента:

$$-\sigma_{zq}+\sigma_{zp}>P_{\pi p}$$
.

$$-\sigma_{zq} + \sigma_{zp} < R_{cл}$$
.

$$-\ \sigma_{zq} + \sigma_{zp} > R_{\rm c.r.}$$

$$- \ \sigma_{zq} + \sigma_{zp} < R.$$

114. Тяжелая трамбовка изготавливается из:
– Дерева. – Железобетона.

- Кирпича.
- Металла.
- 115. Шпунтовые конструкции используют:
- Для улучшения условий работы грунтов, как ограждающие элементы в основания сооружений.
 - Как грунтовые подушки.
 - Для увеличения несущей способности фундамента.
 - Все варианты не верны.
- 116. Электрохимическое закрепление грунтов используется для оснований с $\mathbf{K}_{\mathbf{\Phi}}$:
 - 10 м/сут.
 - 1-10 м/сут.
 - < 0.1 m/cyt.
 - -0,1-1 м/сут.
 - 117. Для чего применяются песчаные сваи:
 - Для закрепления откосов.
 - Для укрепления оснований.
 - Для уплотнения лессовых грунтов.
 - Для глубинного уплотнения грунтов.
 - 118. В каких грунтах возможно применять цементацию?
 - В песках для уменьшения фильтрации через них.
 - В рыхлых песках для их уплотнения.
- В грунтах с большим коэффициентом фильтрации, а также для заполнения пустот.
 - В лессовых грунтах для устранения просадочных свойств.

119. Наибольший эффект в случае применения подводных взрыво достигается, если:
$-S_r = 1.$ $-S_r = 0.8.$ $-S_r = 0.7.$ $-S_r = 0.7-0.8.$
120. Грунтовые сваи применяются для уплотнения и улучшения строительны свойств просадочных макропористых и насыпных пылевато-глинистых грунтов н глубине до:
 20 м. 10 м. 15 м. 30 м.
121. Для каких грунтов эффективно уплотнение грунтов трамбовками?
 Для песков пылеватых и крупнообломочных грунтов. Для сыпучих и лессовых. Для слабых глинистых грунтов. Для супесей и суглинков.
122. Деревянные шпунтовые ограждения применяют для крепления пр глубине:
 3-5 м. До 3 м. 1-2 м. 1-3 м.
123. Конструкции креплений котлованов выбирают в зависимости о следующих условий:

- Все вышеперечисленные условия.
- Свойства грунтов, угв.
- Глубина котлована.
- Срок службы крепления.

124. Шахтами называют:

- Выемки, имеющие большую ширину и малую длину.
- Выемки, имеющие малую ширину и большую глубину.
- Выемки, имеющие малые размеры в плане и большую глубину.
- Выемки, имеющие малую ширину и большую длину.
- 125. Закладное крепление состоит из:
- Стоек, распорок и горизонтальных досок (забирки).
- Стоек.
- Распорок и горизонтальных досок (забирки).
- Стоек и горизонтальных досок (забирки).
- 126. При создании противофильтрационных завес не используют:
- Создание противофильтрационных завес.
- Замораживание (естественное искусственное).
- Тампонаж.
- Битумизация.
- 127. Закладные крепления устраивают:
- При глубине котлована до 4 м в сухих и маловлажных грунтах.
- При глубине котлована до 2-4 м в сухих и маловлажных грунтах.
- При глубине котлована до 2-4 м в суглинках и глинах.
- При глубине котлована до 2 м в сухих грунтах.
- 128. Расчет заанкеренной стенки по схеме Якоби:
- Свободно опертая стенка.
- Свободного шпунтирования.
- Заделанная стенка.
- Стенка свободного опирания.
- 129. Глубина котлована с вертикальными стенками без крепления в суглинках и глинах:
 - До 3 м.
 - До 2 м.
 - До 5 м.
 - До 4 м.

130. Глубина котлована с вертикальными стенками без крепления в песках
— Д о 0,5 м.

- До 1,5 м.
- До 2 м.
- До 1 м.
- 131. Проект котлована это:
- Указания по производству и организации работ.
- Все вышеперечисленные мероприятия.
- Чертеж котлована.
- Защитные мероприятия.
- 132. Длина деревянных шпунтин:
- Не превышает 5 м.
- Не превышает 8 м.
- Не превышает 6 м.
- Не превышает 3 м.
- 133. Водопонижение осуществляется с помощью:
- а) Глубинного водопонижения.
- в) Комбинация двух методов а) и б).
- б) Открытого водоотлива.
- г) а) и б) как самостоятельные методы.
- 134. Какая форма металлического шпунта не применяется:
- Корытообразная (при больших изгибающих моментах).
- Плоская.
- Z-образная.
- Т- образная.
- 135. Цели защитных мероприятий по возведению котлованов:
- Обеспечение устойчивости стенок котлована на все время производства строительных работ.
- Сохранение природной структуры грунтов в основании возводимых фундаментов.
 - Улучшение строительных свойств основания.

- Обеспечение устойчивости стенок котлована на все время производства строительных работ и сохранение природной структуры грунтов в основании возводимых фундаментов.
 - 136. Какие методы для защиты котлованов от подтопления используют:
 - Водопонижение.
 - Противофильтрационные завесы.
 - Комбинация первых двух методов.
 - Все варианты верны.
- 137. Нагнетание в грунт какого-либо материала с целью устранения его водопроницаемости называется:
 - Битумизация.
 - Создание противофильтрационных завес.
 - Тампонажем.
 - Искусственное замораживание.
 - 138. Расчет заанкеренной стенки по схеме Блюма-Ломейера:
 - Свободного шпунтирования.
 - Стенка свободного опирания.
 - Заделанная стенка.
 - Свободно опертая стенка.
 - 139. Шпунтовые ограждения служат для крепления:
 - Вертикальных стен котлована при глубине более 4 м.
- Вертикальных стен котлована при глубине более 4 м и при любой глубине, но при уровне подземных вод выше дна котлована.
 - Вертикальных стен котлована при глубине до 4 м.
 - При любой глубине, но при уровне подземных вод выше дна котлована.

140. Котлованами называют:

- Выемки различные по глубине, но с достаточно большими размерами в плане, устраиваемые в грунте и предназначенные для прокладки туннелей и коммуникаций.
- Выемки различные по глубине, но с достаточно большими размерами в плане, устраиваемые в грунте и предназначенные для различных целей: устройство фундаментов, монтаж подземных конструкций и оборудования, прокладка туннелей и коммуникаций и т. п.

- Выемки с достаточно большими размерами в плане, устраиваемые в грунте и предназначенные для монтажа подземных конструкций и оборудования.
- Выемки различные по глубине, устраиваемые в грунте и предназначенные для устройства фундаментов.
 - 141. Что указывают на чертежах котлована:
- Горизонтальную и вертикальную привязку котлована к местности, основные оси, размеры поверху и понизу, абсолютные отметки дна и заглублений, заложение откосов
 - Только абсолютные отметки дна и заглублений, заложение откосов
 - Только основные оси и размеры поверху и понизу
 - Только горизонтальную и вертикальную привязку котлована к местности
 - 142. Какие конструкции шпунтовых стенок не применяются:
 - Плоские.
 - Без креплений (консольные).
 - С грунтовыми анкерами.
 - С распорным креплением.
 - 143. Траншеями называют:
 - Выемки, имеющие малые размеры в плане и большую глубину.
 - Выемки, имеющие малую ширину и большую длину.
 - Выемки с достаточно большими размерами в плане.
 - Выемки, имеющие малую ширину и большую глубину.
 - 144. Глубина котлована с вертикальными стенками без крепления в супесях:
 - До 1,5 м.
 - До 3 м.
 - До 1 м.
 - До 2 м.
 - 145. Металлический шпунт применяют при глубине:
 - 3-5 м.
 - 1-3 м.
 - Более 5 м.
 - Более 8 м.
 - 146. Шпунты могут выполняться из:

- Все варианты верны.
- Дерева.
- Стали.
- Ж/б.
- 147. Для противооползневых конструкций здания используются фундаменты типа:
 - Ленточного.
 - Бареттного.
 - Массивного.
 - Буронабивного.
- 148. Значительное смещение одной части здания или сооружения относительно другой его части сопровождается разрывными деформациями :
 - Трещинами.
 - Пробоинами.
 - Сколами.
 - Разрезами.
- 149. Укажите неправильный ответ. Инъекционное закрепление грунтов различными растворами применяют для:
 - Усиления оснований при углублении фундаментов.
 - Устройства плиты под зданием из закрепленного грунта.
 - Цементации зоны контакта подошвы фундамента с грунтом;
 - Укрепления защитного слоя подошвы фундамента.
- 150. Надежность работы реконструируемых зданий обеспечивается совместной работой системы:
 - Основание фундамент надземные конструкции.
 - Грунт основание фундамент надземные конструкции.
 - Фундамент гидроизоляция подземная и надземная конструкции.
 - Стяжка фундамент сооружение.

<u>А.2 Вопросы для контроля готовности обучающихся к занятиям</u> по разделам дисциплины

Раздел№1 Особенности просадочных грунтов. Типы грунтовых условий

- 1. Перечислите основные физико-механические свойства просадочных грунтов;
- 2. Что такое просадка?;
- 3. Назовите основные критерии просадочности;
- 4. Какие бывают деформационные и прочностные характеристики просадочных грунтов;
- 5. Как развиваются просадочные деформаций по глубине?;
- 6. Какие основные типы грунтовых условий по просадочности вы знаете?.

Раздел№2 Основные вопросы проектирования фундаментов на просадочных грунтах

- 1. Перечислите факторы, учитываемые при проектировании и строительстве на просадочных грунтах;
- 2. Как определяется расчетное сопротивление просадочных грунтов ?
- 3. Как производится расчёт оснований, сложенных просадочными грунтами, по деформациям?
- 4. Приведите основные виды мероприятий по борьбе с просадочными деформациями зданий и сооружений;
- 5. Как производится выбор мероприятий по борьбе с просадочными деформациями сооружений.

Раздел№3 Способы подготовки оснований, сложенных просадочными грунтами

- 1. Какие факторы, влияют на уплотняемость грунтов?
- 2. Назовите последовательность проектирование оснований уплотненных тяжелыми трамбовками;
- 3. Как производится глубинное уплотнение грунтов пробивкой скважин?
- 4. Из каких операций состоит проектирование грунтовых подушек?
- 5. Когда применяются микросвайные фундаменты?
- 6. Как произвести улучшение свойств лессовых грунтов кольматацией?
- 7. Что такое силикатизация грунтов?
- 8. Как закрепляют грунты способом газовой силикатизации?
- 9. Что такое аммонизация лессовых грунтов?
- 10. Перечислите различия между газовой силикатизацией и термическим закреплением грунтов;
- 11. Что представляют из себя фундаменты из цементогрунта?

Раздел№4 Фундаменты в уплотненном грунте

- 1. Как устраиваются забивные фундаменты?
- 2. В каких грунтах устраиваются клиновидно-шпальные фундаменты?
- 3. Когда устраиваются фундаменты из ребристых блоков?
- 4. В каких случаях проектируют фундаменты из блоков в форме усечённой пирамиды?
- 5. Назовите отличия расчета забивных фундаментов от традиционной методики;
- 6. Как устраиваются фундаменты в вытрамбованных котлованах без уширенного основания?
- 7. Как устраиваются фундаменты в вытрамбованных котлованах с уширенным основанием?
- 8. Как определяется несущая способность уплотненных грунтов?
- 9. Для чего производят расчёт по деформациям на действие вертикальных нагрузок?
- 10. Для чего производят расчёт по деформациям с учётом действия горизонтальных нагрузок и моментов?
- 11. Какие отличительное особенности проектирования фундаментов в уплотненном основании?
- 12. Чем достигается экономическая эффективность фундаментов в вытрамбованных котлованах. Их достоинства и недостатки.

Раздел№5 Проектирование свайных фундаментов в просадочных грунтах

- 1. Назовите виды свайных фундаментов, возводимых в просадочных грунтах?
- 2. Из чего изготавливают сваи малых поперечных размеров?
- 3. Как устраиваются фундаменты, не прорезающие полностью просадочную толщу?
- 4. Когда устраиваются фундаменты с пирамидальными сваями ?
- 5. Что представляют собой короткие буронабивные сваи «Хайвей»;
- 6. Что представляют собой буробетонные фундаменты системы «Главленинградстроя»;
- 7. Как устраиваются набивные сваи с несколькими уширениями?
- 8. Назовите основные критерии алгоритма расчета набивных свай с несколькими уширениями;
- 9. Что такое набивные сваи в выштампованном ложе?
- 10. Как производится расчет сваи в выштампованном ложе?

Раздел№6 Фундаменты глубокого заложения на просадочных грунтах

- 1. Назовите классификацию фундаментов глубокого заложения?
- 2. Какие особенности работы основания фундаментов глубокого заложения?
- 3. Как производится расчёт оснований фундаментов глубокого заложения по условию прочности?

- 4. Как производится расчет фундаментов глубокого заложения по предельным осадкам?
- 5. Как производится расчёт фундаментов глубокого заложения на эксплуатационные нагрузки?

А.З Рубежный контроль

Целью проведения рубежного контроля является проверка знаний у обучающихся по соответствующим разделам дисциплины.

Рубежный контроль проводится два раза в семестр на 8 и 14 неделях по итогам изучения нескольких разделов дисциплины в соответствии с рабочей программой дисциплины (модуля). Рубежный контроль проводится в письменной форме.

Вопросы рубежного контроля

8 неделя:

- 1. Фундаменты на просадочных грунтах. 2-а типа грунтовых условий. Определение просадки фундамента при общем и местном замачивании.
- 2. Проектирование фундаментов на набухающих грунтах. Определение перемещений фундаментов.
- 3. Уплотнение грунтов поверхностное и глубинное.
- 4. Устройство песчаных подушек.
- 5. Инъекционные методы закрепления грунтов.
- 6. Укрепление грунтов с помощью электрического тока.
- 7. Обжиг грунтов.

Вопросы рубежного контроля

14 неделя:

- 1. Фундаменты на слабых пылевато-глинистых водонасыщенных и заторфованных грунтах. Конструктивные мероприятия.
- 2. Особенности строительства на закарстованных территориях. Оценка характера и степени опасности каркаса.
- 3. Противокарстовая защита. Устройство противокарстовых фундаментов. Расчет фундаментных конструкций.
- 4. Проектирование фундаментов на подрабатываемых территориях. Принципы проектирования и защитные конструктивные мероприятия.

Оценочные средства «Блок В»

(оценочные средства для диагностирования сформированности уровня компетенций – «уметь»)

В.1 Варианты типовых задач для выполнения на практических занятиях:

Практическое занятие №1

Тема: «Определение просадки от собственного веса грунта и типа грунтовых условий по просадочности»

Задание. Определить просадку от собственного веса грунта и типа грунтовых условий по просадочности. Здание коридорного типа $36 \times 15 \times 15$ м с неполным поперечным каркасом, с подвалом. Нормативная и расчетная нагрузки на фундамент колонны (суммарные с учетом надежности и сочетания от грузовой площади) принимаются по таблице 1. Рассчитать конечную осадку фундамента методом эквивалентного слоя.

Таблица 1 – Исходные данные для расчета фундаментов

таолица т меходиме данные для расчета фундаментов											
№ варианта	Нагрузк	а N, кН	- № варианта	Нагрузка N, кН							
лу варианта	нормативная	расчетная	ле варианта	нормативная	расчетная						
1	2160	2490	11	2600	2990						
2	2200	2540	12	2640	3040						
3	2280	2590	13	2680	3090						
4	2320	2640	14	2720	3140						
5	2360	2590	15	2760	3190						
6	2400	2740	16	2800	3240						
7	2440	2790	17	2800	3290						
8	2480	2840	18	2840	3340						
9	2520	2890	19	2880	3390						
10	2560	2940	20	2920	3440						

Практическое занятие №2

Тема: «Определение расчетного сопротивления просадочного грунта»

Задание. Определить расчетное сопротивление просадочного грунта. Исходные данные приведены в таблицах 2, 3. Варианты плана строительной площадки M1:2000 представлены на рисунке 1.

Таблица 2 – Исходные данные для расчета фундаментов

№ п/п	№ строительной площадки	Грунтовые условия	Район строительства	Глубина подвала, м	Нормативная нагрузка на фундамент, кН/м	Толщина стен, м	Расчетная среднесуточная температура в помещениях 1-го этажа
1	1	1	Волгоград	0,70	500	0,51	15
2	2	2	Камышин	1,50	400	0,64	20
3	3	3	Пенза	1,40	650	0,64	15
4	4	4	Кострома	1,20	550	0,40	20

5	5	5	Саратов	1,00	550	0,40	15
6	6	6	Смоленск	1,50	450	0,51	20
7	7	7	Курск	1,30	500	0,51	15
8	8	8	Уфа	1,20	450	0,64	20
9	9	1	Волгоград	0,80	450	0,51	15
10	10	2	Камышин	1,30	300	0,64	20
11	1	3	Пенза	1,20	550	0,64	15
12	2	4	Кострома	1,40	600	0,64	20
13	3	5	Саратов	1,30	500	0,40	15
14	4	6	Смоленск	1,40	500	0,51	20
15	5	7	Курск	1,00	550	0,51	15
16	6	8	Уфа	1,30	400	0,50	20
17	7	1	Волгоград	1,00	350	0,51	15
18	8	2	Камышин	1,20	350	0,51	20
19	9	3	Пенза	1,00	500	0,64	15
20	10	4	Кострома	1,60	450	0,40	20

Таблица 3 - Варианты грунтовых условий строительной площадки

				іубина		Pac	четны	е значе	_	рактери		довери	ительн	ой
га				ерхност	ги, м			1	верс	ЯТНОСТ	ЪЮ	1		
аН	КО	IT		оев	×									
иф	№ слоя	Грунт	гру	нта	BbI	$^{ m /M}^{ m 3}$	/M ³					Ia	Па	
№ варианта	No	$\Gamma_{ m j}$			грунтовых вод	γ , kH/m ³	γs, κΗ/м ³	$\boldsymbol{\omega}$	ϖ_{p}	ω_{t}	ϕ°	С, кПа	Е, МПа	υ
			OT	до	гру	γ,	γs,					С	ъ	
	1	1	0	0,8		_	-	_	_	_	-	_	-	_
1	2	2	0,8	5,3	4	17,1	27,3	0,29	0,2	0,36	16	18	25	0,15
	3	3	5,3	12,5		18,7	26,6	0,25	-	-	29	0	28	0,22
	1	1	0	0,6		-	-	-	-	-	-	-	-	-
2	2	3	0,6	4,5	6,2	18,7	26,6	0,25	-	-	29	0	28	0,22
	3	2	4,5	13,4		17,2	27,3	0,29	0,21	0,36	16	20	18	0,14
	1	1	0	0,9		-	-	-	-	-	-	-	-	-
3	2	2	0,9	6	2,7	17,1	27,3	0,29	0,25	0,36	16	18	25	0,15
	3	4	6	14,2		15,7	27,8	0,47	0,44	0,74	28	23	38	0,1
	1	1	0	0,7		ı	ı	-	-	-	ı	ı	ı	-
4	2	5	0,7	4,8	3,6	18,9	26,9	0,14	0,18	0,27	15	35	30	0,18
	3	6	4,8	10,6		17,7	27,4	0,24	0,2	0,45	14	38	27	0,12
	1	1	0	0,9		-	-	-	-	-	-	-	-	-
5	2	2	0,9	7,2	2,2	18	27,2	0,22	0,2	0,35	19	13	15	0,12
	3	7	7,2	14		17,8	26,6	0,26	-	-	26	3	21	0,3
	1	1	0	0,6		-	-	-	-	-	-	-	-	-
6	2	3	0,6	3,4	2,8	18,7	26,6	0,25	-	-	29	0	28	0,22
	3	5	3,4	11,6		18,9	26,9	0,14	0,18	0,27	15	35	30	0,18
	1	1	0	0,9		-	-	-	-	-	-	-	-	-
7	2	7	0,9	2,8	1,8	17,8	26,6	0,26	-	-	26	3	21	0,3
	3	5	2,8	14,7		18,9	26,9	0,14	0,18	0,27	15	35	30	0,18
	1	1	0	0,7		-	-	-	-	-	-	-	•	-
8	2	3	0,7	5,5	4,2	18,7	26,6	0,25	_	-	29	0	28	0,22
	3	6	5,5	13,1		17,7	27,4	0,24	0,2	0,45	14	38	27	0,12

Грунты: 1 — почва каштановая, суглинистая; 2 — суглинок пылеватый, тяжелый полутвердый; 3 — песок мелкий, средней плотности; 4 — глина жирная, полутвердая; 5 — суглинок легкий, плотный, полутвердый с галькой; 6 — глина пылеватая, комковая, полутвердая; 7 — песок пылеватый, рыхлый.

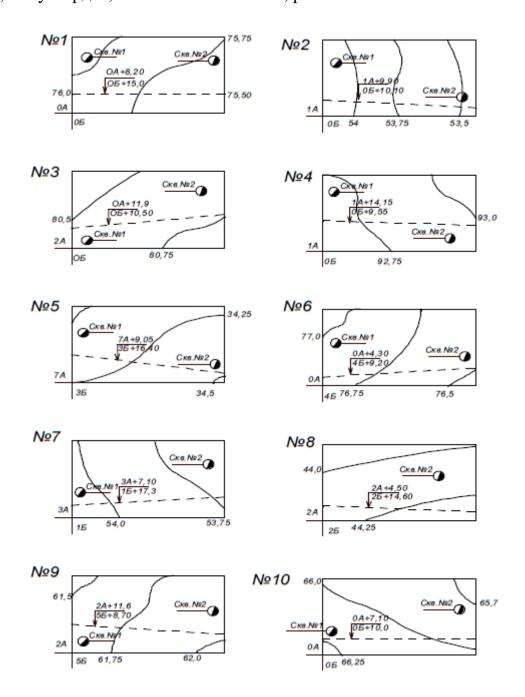


Рисунок 1 - Варианты плана строительной площадки М1:2000

Практическое занятие №3 Тема: «Расчет оснований, сложенных просадочными грунтами, по деформациям»

Задание. Рассчитать основания, сложенные просадочными грунтами, по деформациям. Построить эпюры реактивных давлений грунта, поперечных сил и изгибающих моментов, показанной на рисунке 2. Исходные данные приведены в

таблице 4. Варианты грунтовых условий строительной площадки представлены в таблице 3.

Таблица 4 -	Исходные данные для	расчета
I de Collinger .	Transpire deministre dem	pac icia

№ варианта	Длина балки L, м	Длина участка <i>l</i> , м	Ширина балки b, м	Жесткость балки В, МПа·м ⁴	Расчетная нагрузка q, кН/м ²	Модуль общей деформации основания E_0 , $M\Pi a$	Коэффициент поперечных деформаций основания υ_0
1	4	1		212,5	80	30	0,4
2	5	1,1		256,8	90	15	0,25
3	6	1,2		212,5	100	22	0,35
4	7	1,3		256,8	110	14	0,1
5	8	1,4		212,5	120	19	0,2
6	4	1,5		256,8	130	35	0,4
7	5	1,1		212,5	140	50	0,1
8	6	1,2	1	256,8	150	17	0,35
9	7	1,3		212,5	160	10	0,3
10	8	1,4		256,8	170	5	0,4
11	4	1		212,5	180	28	0,1
12	5	1,1		256,8	70	18	0,25
13	6	1,2		212,5	165	44	0,3
14	7	1,3		256,8	125	12	0,2
15	8	1,4		212,5	105	23	0,4

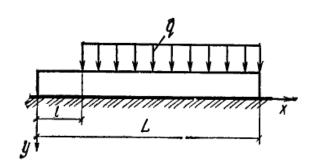


Рисунок 2 — Расчетная схема эпюры

Практическое занятие №4

Тема: «Расчет фундаментов мелкого заложения по деформациям с учетом наличия просадочных грунтов в основании»

Задание. Рассчитать фундаменты мелкого заложения по деформациям с учетом наличия просадочных грунтов в основании. Исходные данные представлены в таблице 1, 2. Варианты грунтовых условий строительной площадки представлены в таблице 3.

Практическое занятие №5

Тема: «Учет взаимного влияния фундаментов при расчете просадок. Расчет просадки фундаментов при точечном источнике замачивания просадочного грунта»

Задание. Расчет просадки свайных фундаментов при точечном источнике замачивания просадочного грунта. Определить количество свай в кусте, распределить их в плане, спроектировать ростверки и свайный кустовой фундамент. Произвести расчет осадки свайного кустового фундамента. Исходные данные для расчета свайных фундаментов представлены в таблице 5. Варианты грунтовых условий строительной площадки представлены в таблице 3.

Таблица 5 - Исходные данные для расчета свайных фундаментов

	таолица з ттеходиые дани.	ые для рас тета сы	иниви фундамени	ОВ
№ варианта	Поперечное сечение сваи	Количество стержней, диаметр и класс арматуры	Материал	Размеры сечения, см
1, 16		4Ø20A-300	B15	20×20
2, 17		4Ø16A-300	B20	25×25
3, 18	4	4Ø18A-240	B30	35×35
4, 19		8Ø16A-240	B25	30×30
5, 20		8Ø18A-240	B15	30×30
6, 21		8Ø20A-300	B20	20×30
7, 22		6Ø22A-300	B25	30×40
8, 23	~	8Ø16A-300	B25	30×40
9, 24		6Ø18A-240	B30	20×40
10, 25	<u>b</u>	8Ø18A-240	B15	25×40
11, 26	d †	8Ø16A-240	B15	25×25, 11
12, 27		4Ø16A-300	B20	30×30, 12
13, 28		4Ø18A-240	B25	35×35, 13
14, 29		4Ø18A-300	B25	25×25, 11
15, 30	<u> </u>	8Ø18A-300	B15	40×40, 27,8

Примечание: Способы погружения свай в вариантах: 1...8 – забивка молотом; 9...16 – забивка в предварительно пробуренные скважины; 17...23 – вибропогружение; 24...30 – вибровдавливание.

Практическое занятие №6

Тема: «Определение необходимой глубины уплотнения просадочных грунтов» Задание. Определить необходимую глубину уплотнения просадочных грунтов. Рассчитать и вычертить схему уплотненного грунтового основания методом вибротрамбования. Уплотнение грунтов выполняем на всю толщу просадочного грунта ИГЭ-1. Исходные данные приведены в таблице 5.

Таблица 5 - Инженерно-геологические условия строительной площадки

	Таолица 3 - г	11171(011	opno i	003101	11 10	UICII	- 	JIODII	легр		· · · · · ·	11 110	1011	идп	11	1
Га		Инженерно-геологический элемент №1 (ИГЭ-1)														
№ варианта	Наименование грунта	Мощ-	γ _{II} , кН/м ³	γ _s , κΗ/м ³	W, %	₩ _p ,			Е, МПа	Сп,	φп, град	дав.	s _{sl} про пени кПа	и Р,	P _{sl} ,	
	трунта	h ₁ , м	K11/M	K11/M	70	70	70	д.сд.	IVIIIa	KIIa	трад		200	300	кПам/су	M/Cy1
0	Супесь пластичная	5	15,0	27,0	20	17	23	0,5	14	10	18	0,008	0,010	0,015	185	0,60
1	Супесь пластичная	7	14,9	27,2	15	13	18	0,4	8	11	17	0,005	0,009	0,011	220	0,70
2	Суглинок тугопластичный	6	15,1	27,1	22	17	28	0,45	7	13	15	0,007	0,010	0,013	190	0,40
3	Супесь пластичная	9	14,8	26,0	16	14	19	0,3	8	9	20	0,004	0,009	0,012	205	0,50
4	Супесь пластичная	8	15,3	26,2	18	16	22	0,35	6	8	19	0,005	0,007	0,011	240	0,65
5	Суглинок тугопластичный	6	15,2	25,9	21	15	30	0,4	10	15	14	0,008	0,010	0,014	180	0,20
6	Супесь пластичная	5	14,7	27,2	23	17	21	0,5	12	9	15	0,007	0,011	0,016	170	0,45
7	Суглинок тугопластичный	7	15,3	27,0	22	16	29	0,45	13	16	14	0,006	0,009	0,011	215	0,25
8	Суглинок тугопластичный	4	15,0	27,3	20	15	25	0,5	10	15	16	0,009	0,012	0,017	160	0,30
9	Супесь пластичная	6	15,1	27,5	19	17	22	0,4	12	10	13	0,005	0,008	0,012	225	0,55

Примечание: Грунты ИГЭ-1 относятся к І типу грунтовых условий по просадочным свойствам.

Практическое занятие №7 Тема: «Определение параметров трамбовки и глубины уплотнения слабых грунтов»

Задание. Определить параметры трамбовки и глубины уплотнения слабых грунтов. После чего определить размеры фундамента центрально установленного штамповочного паровоздушного молота (импульсное воздействие). Материал штампуемых деталей — сталь. Материал фундамента — железобетон. Исходные данные приведены в таблице 7. Варианты грунтовых условий строительной площадки представлены в таблице 3.

Таблица 7 - Исходные данные для расчета

_			1101110 7111111 7	1 71	1		
	<u>№</u> варианта	Масса падающих частей m ₀ , т	Масса молота m _h , т	Масса шабота т _{ап} , т	Масса подшаботной прокладки m_{v} , т	Максимальная скорость падающих частей υ, м/с	Отметка подошвы шабота от уровня пола цеха, м
	1	5	42	110	3,1	8,95	2,2
	2	6	34	90	2,4	7,6	1,9
ſ	3	7	51	100	3,5	12,0	2,4

4	4	18	80	2,6	9,0	1,8
5	3	19	120	1,9	7,96	2,1
6	2	20	70	1,5	6,54	2,5
7	6	46	115	2,3	5,48	1,4
8	5	31	130	3,4	7,12	1,7
9	3	10	125	2,8	8,19	2,3
10	4	36	80	3,0	5,42	2,2
11	7	54	60	3,7	4,32	1,9
12	2	45	100	4,0	5,65	2,4
13	1	42	135	2,7	4,95	1,8
14	6	38	110	1,8	9,88	2,1
15	4	27	90	2,0	8,59	2,5

Примечание: Подшаботная прокладка выполнена из трех рядов дубовых брусьев I сорта сечением 15×10 см.

Практическое занятие №8

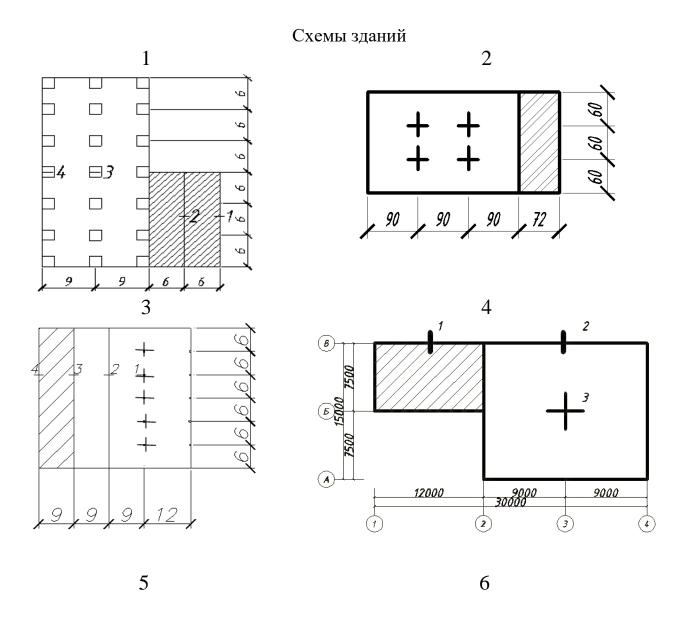
Тема: «Особенности проектирования уплотнения слабых грунтов сваями» Задание. Особенности проектирования сваями. Установить возможность надстройки жилого дома на 3 этажа (9 м) с уплотнением слабых грунтов и заменой существующих перекрытий и покрытия. Фундамент бутобетонный, ленточный. Исходные данные приведены в таблице 7.

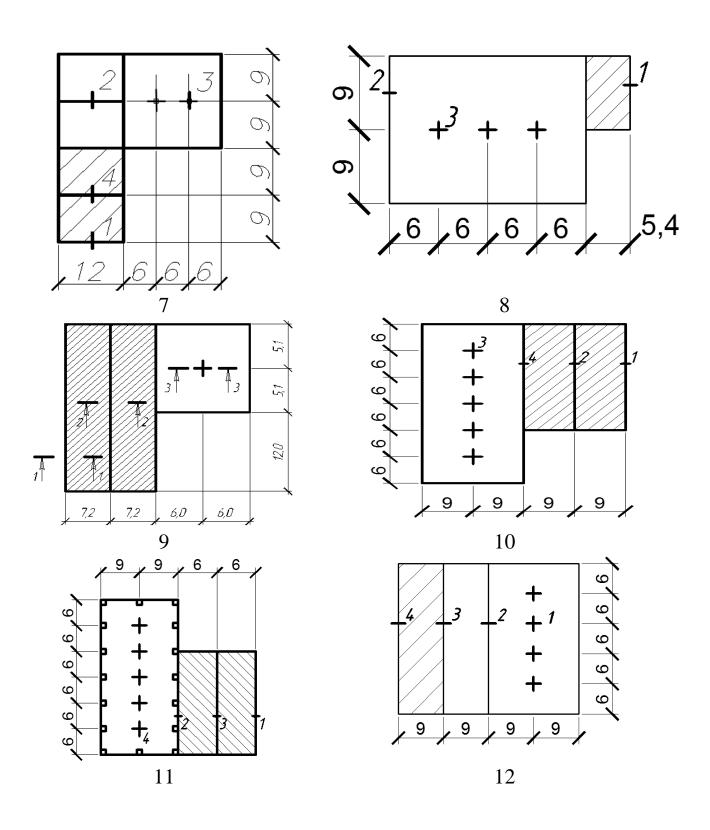
Таблица 7 - Исходные данные для расчета

Vanatemanuamusu	Обоз.	Ед.					Вария	анты				
Характеристики	0003.	изм.	1	2	3	4	5	6	7	8	9	10
Ширина подошвы фундамента до реконструкции	b	M	1,0	1,1	1,2	1,5	1,4	1,3	1,3	1,0	1,1	1,2
Глубина заложения фундамента	d	M	3,2	3,1	2,4	3,0	2,6	2,5	2,9	2,8	2,7	2,3
Глубина подвала	d _b	M	3,8	3,7	3,0	3,7	3,2	3,1	3,5	3,4	3,3	2,9
Приведенная глубина заложения	d_1	M	0,5	0,3	0,35	0,45	0,37	0,4	0,52	0,4	0,48	0,55
Длина здания	L	M	60	70	95	41	46	43	31	72	87	49
Высота здания до надстройки	Н	M	12	14	18	15	10	13	16	17	19	11
Нагрузка на 1 м.п. до реконструкции	N	кН	200	220	230	260	250	240	270	280	290	300
Нагрузка на 1 м.п. после реконструкции	N'	кН	360	450	420	490	410	470	470	500	435	520
Грунт			c	углино	К		супесь		пе	сок пы	левать	ιй
Мощность слоя	Н	M	6,0	7,0	8,0	6,0	7,0	5,0	7,0	8,0	9,0	10,0
Удельный вес грунта	γ	кН/м ³	19	18,5	19	17	17	16,5	16,3	16,8	17,2	17,7
Коэффициент пористости	e		0,6	0,55	0,5	0,6	0,7	0,55	0,65	0,54	0,45	0,5

Показатель	J_1		0,2	0,3	0,5	0,4	0,2	0,6	_	_	_	_
консистенции	01		0,2	0,5	0,5	٠, ١	0,2	0,0				
Коэффициент												
относительной	m_{vi}	кН/м ²	5	6	7	4	9	8	3	5	6	7
сжимаемости												
Надстройка	H_1	M	8	7	6	9	10	10	8,5	6,5	5,5	10
Коэффициент												
пористости после	e'		0,5	0,6	0,5	0,6	0,58	0,58	0,54	0,6	0,59	0,6
уплотнения												

Примечание: значение коэффициента сжимаемости необходимо в расчетах умножать на 10^{-5} .


Оценочные средства «Блок С»


(оценочные средства для диагностирования сформированности уровня компетенций – «владеть»)

С.1 Индивидуальные творческие задания

Задание: Произвести расчет и конструирование следующих видов фундаментов на просадочных грунтах: ленточный, столбчатый, свайный.

Исходные данные для расчета принимаются согласно номера по журналу для всех трех видов фундаментов.

Технические данные сооружений

№	No Hayrvayanayyya			Значения для вариантов 1-10							
Π/Π	Наименование	1	2	3	4	5	6	7	8	9	10
1	Момент от ветровой и крановой нагрузки, кН м	42	30	44	38	0	0	0	40	55	0
2	Высота этажа, м	11/3	12/4	12/4	13/3,6	3,3	3,8	3,8	14/3,3	12/3	3,7
3	Высота подвала, м	2,2	2,6	2,6	2,5	2,2	2,3	2.5	2,1	2,6	2,3
4	Число этажей	1/3	1/3	1/4	1/4	4	5	5	1/5	1/3	5
5	Собственный вес перекрытий и покрытий, к H/M^2	3,6	3,8	4,5	3,9	3,9	3,0	3,1	3,3	3,4	4,0
	Временная нагрузка на перекрытие, кH/м ²	2,1	1,8	1,7	1,9	1,5	1,5	2,0	1,7	2,4	1,5
7	Вес 1 M^2 проекции кровли, $\kappa H/M^2$	1,4	1,0	1,6	0,9	0,9	1,4	1,2	1,0	0,9	1,5
8	Толщина стен, м	0,51	0,64	0,64	0,51	0,64	0,64	0,64	0,51	0,64	0,51
9	Удельный вес материала стен, $\kappa H/M^3$	17,5	19,5	18,5	19,0	15,5	17,5	18,0	17,0	16,5	17,5
10	Уровень грунтовых вод, -↓	-5,0	-5,0	-0,5	-6,0	-8,0	-7,0	-5,0	-5,0	-7,3	-7,0
11	Конструкция полов 1 этажа в безподвальной части здания						По лагам				
12	Температура воздуха в помещении, °С	18	18	18	18	20	18	18	18	18	18

Данные для геологического разреза

№	Наименование	Значения для вариантов 1-10									
Π/Π	паименование	1	2	3	4	5	6	7	8	9	10
	Отметка устья скважин										
1	1	60	70	90	90	130	130	100	90	90	80
1	2	61	71	91	91	131	131	101	91	91	81
	3	62	72	92	92	132	132	102	92	92	82
	Расстояние между скважинами										
2	1-2	22	24	28	28	28	28	30	28	28	26
	2-3	28	26	22	22	25	25	20	22	22	24

Оценочные средства «Блок D»

(оценочные средства, используемые в рамках промежуточного контроля знаний)

Перечень вопросов для промежуточной аттестации (зачет)

- 1. Внешние признаки просадочных грунтов.
- 2. Схемы фундаментов при использовании «стена в грунте». Достоинства и недостатки устройства фундаментов методом "стена в грунте".
- 3. Отличия физических характеристик просадочных грунтов от соответствующих характеристик непросадочных грунтов.
 - 4. Методы глубинного уплотнения грунтов.
 - 5. Перечислите факторы, влияющие на уплотняемость грунтов.
 - 6. Сущность способа фундаментов в вытрамбованных котлованах.
 - 7. Охарактеризуйте развитие просадочных деформаций по глубине.
- 8. Устройство фундаментов в вытрамбовыванных котлованах с уширенным основанием.
 - 9. Сжимемость грунтов. Компрессионная кривая для просадочных грунтов.
 - 10. Классификация особых (региональных) грунтов. Общая характеристика.
- 11. Конструктивные мероприятия по борьбе с просадочными деформациями сооружений.
 - 12. Достоинства и недостатки метода кольматации.
 - 13. Сущность способа аммонизации просадочных грунтов.
- 14. Коэффициент сжимаемости грунта. Компрессионная кривая для просадочных грунтов.
 - 15. Просадочные грунты 1 и 2 типа.
 - 16. Сущность способа защелачивания просадочных грунтов.
 - 17. Мероприятия по борьбе с просадочными деформациями сооружений.
- 18. Вчем особенность закрепления просадочных грунтов методом газовой силикатизации.
- 19. Водозащитные мероприятия по борьбе с просадочными деформациями сооружений.
- 20. Конструктивное исполнение и характер работы клиновидно-шпальных фундаментов.
 - 21. Расчетное сопротивление просадочных грунтов.
 - 22. Процессы, происходящие в грунтах при термическом закреплении.
- 23. Факторы, учитываемые при проектировании и строительстве на просадочных грунтах.
 - 24. Виды свайных фундаментов, используемых в просадочных грунтах.
 - 25. Охарактеризуйте развитие просадочных деформаций по глубине.
- 26. Устройство свайных фундаментов с опережающим нагружением ростверка.
 - 27. Типы грунтовых условий по просадочности.
 - 28. Использование пирамидальных свай. Достоинства и недостатки.
 - 29. Мероприятия по борьбе с просадочными деформациями сооружений.

- 30. Область применения и конструкции фундаментов в вытрамбованных котлованах.
 - 31. Поверхностные методы искуственного улучшения грунтов основания.
 - 32. Конструктивное исполнение фундаментов из ребристых блоков.
 - 33. Глубинные методы искуственного улучшения грунтов основания.
- 34. Устройство фундаментов в вытрамбовыванных котлованах с уширенным основанием.
- 35. Конструктивные мероприятия по борьбе с просадочными деформациями сооружений.
 - 36. Свайные фундаменты с забивными оголовками.
 - 37. Достоинства и недостатки микросвайных фундаментов.
- 38. Расчетное сопротивление грунтового основания с просадочными явлениями.
 - 39. Перечислите факторы, влияющие на уплотняемость грунтов.
 - 40. Фундаменты в вытрамбованных котлованах без уширенного основания.
 - 41. Свойства биогенных грунтов.
 - 42. Виды свайных фундаментов, используемых в просадочных грунтах.
- 43. Напряжение в грунтовом основании от собственного веса грунта на границах слоев грунта и глубине заложения фундамента в просадочных условиях.
- 44. Техническая целесообразность и экономическая эффективность свай малых поперечных размеров (микросвай).
 - 45. Свойства насыпных и намывных грунтов.
- 46. Особенности проектирования свайных фундаментов, не прорезающих полностью просадочную толщу.
 - 47. Глубинное уплотнение грунта.
 - 48. Конструкция и область применения буронабивных свай "Хайвей".
 - 49. Термическое закрепление грунтов.
 - 50. Конструкция и расчет набивных свай в выштампованном ложе.
 - 51. Достоинства и недостатки метода силикатизации.
 - 52. Конструкция и расчет набивных свай в раскатанных скважинах.
 - 53. Армирование грунта и признаки его эффективности.
 - 54. Фундаменты глубокого заложения.
 - 55. Цель и порядок проведения опытного уплотнения грунта.
 - 56. Конструкции опускных колодцев.
 - 57. Классификация особых (региональных) грунтов.
- 58. Достоинства и недостатки устройства фундаментов методом " стена в грунте".
- 59. Закон уплотнения грунта. Компрессионная кривая для просадочных грунтов.
 - 60. Опускные колодцы в тиксотропных рубашках.

Раздел 3 — Организационно-методическое обеспечение контроля учебных достижений

КРИТЕРИИ ОЦЕНИВАНИЯ ПО КАЖДОМУ ВИДУ ТЕКУЩЕГО, РУБЕЖНОГО И ПРОМЕЖУТОЧНОГО (ИТОГОВОГО) КОНТРОЛЯ УСПЕВАЕМОСТИ

Критерии оценивания ответа студента на зачете

Итоговой формой контроля знаний, умений и навыков по дисциплине в 9-ом семестре является зачет.

Зачет проводятся в письменной форме по билетам, которые включают два теоретических вопроса.

Оценка знаний студентов проводится по следующим критериям:

Бинарная шкала	Показатели	Критерии
Зачтено	1 Полнота изложения	Дан полный, в логической
	георетического материала;	последовательности развернутый ответ на
	2 Полнота и правильность	поставленный вопрос, где студент
	решения практического	продемонстрировал знания предмета в полном
	задания;	объеме учебной программы, достаточно
	3 Правильность и/или	глубоко осмысливает дисциплину,
	аргументированность	самостоятельно, и исчерпывающе отвечает на
	изложения	дополнительные вопросы, приводит
	(последовательность	собственные примеры по проблематике
	действий);	поставленного вопроса, решил предложенные
	4 Самостоятельность ответа;	практические задания без ошибок.
	5 Культура речи.	Дан развернутый ответ на поставленный
		вопрос, где студент демонстрирует знания,
		приобретенные на лекционных и семинарских
		занятиях, а также полученные посредством
		изучения обязательных учебных материалов
		по курсу, дает аргументированные ответы,
		приводит примеры, в ответе присутствует
		свободное владение монологической речью,
		логичность и последовательность ответа.
		Однако допускается неточность в ответе.
		Решил предложенные практические задания с
		небольшими неточностями.
		Дан ответ, свидетельствующий в основном о
		внании процессов изучаемой дисциплины,
		отличающийся недостаточной глубиной и
		полнотой раскрытия темы, знанием основных
		вопросов теории, слабо сформированными
		навыками анализа явлений, процессов,
		недостаточным умением давать
		аргументированные ответы и приводить
		примеры, недостаточно свободным владением
		монологической речью, логичностью и
		последовательностью ответа. Допускается
		несколько ошибок в содержании ответа и
		решении практических заданий.

Бинарная шкала	Показатели	Критерии
Незачет		Дан ответ, который содержит ряд серьезных
		неточностей, обнаруживающий незнание
		процессов изучаемой предметной области,
		отличающийся неглубоким раскрытием темы,
		незнанием основных вопросов теории,
		несформированными навыками анализа
		явлений, процессов, неумением давать
		аргументированные ответы, слабым
		владением монологической речью,
		отсутствием логичности и
		последовательности. Выводы поверхностны.
		Решение практических заданий не выполнено,
		г.е. студент не способен ответить на вопросы
		даже при дополнительных наводящих
		вопросах преподавателя.

Критерии оценивания выполнения практических занятий

Критерии оценки практических занятий

	Уровень				
Критерии	1	2	3		
Правильность проведения расчетов	Выполнено с ошибками	Выполнено верно	Выполнено верно		
Умение самостоятельно проводить расчеты	Выполнено с ошибками или не в полном объеме	Выполнено с незначительными ошибками	Выполнено верно		
Способность объяснить и обосновать полученные результаты	Затрудняется	Частичное объяснение	Полное обоснование		
Оформление	Неаккуратное	Имеются помарки, отклонения	Аккуратное		

Если все критерии соответствуют третьему уровню, то студенту выставляется максимальный бал (отлично), если все критерии соответствуют первому уровню – минимальный (неудовлетворительно).

Критерии оценивания устного опроса

Развернутый ответ студента должен представлять собой связное, логически последовательное сообщение на заданный вопрос, показывать его умение применять определения, правила в конкретных случаях.

Критерии оценивания:

- 1) полноту и правильность ответа;
- 2) степень осознанности, понимания изученного;
- 3) языковое оформление ответа.

Критерии оценки	Бинарная шкала
Обучающийся, демонстрирует	
системные теоретические знания,	
владеет терминологией, делает	
аргументированные выводы и	зачтено
обобщения, приводит примеры,	
показывает способность быстро	
реагировать на уточняющие вопросы.	
Обучающийся, демонстрирует	
незнание теоретических основ	
предмета, не умеет делать	
аргументированные выводы и	
приводить примеры, не владеет	не зачтено
терминологией, проявляет отсутствие	не зачтено
логичности и последовательности	
изложения, делает ошибки, которые	
не может исправить даже при	
коррекции преподавателем.	

<u>Критерии оценивания знаний студентов при проведении</u> <u>тестирования</u>

4-балльная шкала	Показатели	Критерии
Отлично или зачтено	1. Полнота	Выполнено 85 % заданий предложенного
	выполнения тестовых	геста, в заданиях открытого типа дан
		полный, развернутый ответ на
	-	поставленный вопрос.
Хорошо или зачтено	выполнения;	Выполнено 76 % заданий предложенного
	3. Правильность	геста, в заданиях открытого типа дан
		полный, развернутый ответ на
	4. Самостоятельность	поставленный вопрос; однако были
	_	допущены неточности в определении
		понятий, терминов и др.
Удовлетворительно		Выполнено 61 % заданий предложенного
или зачтено		геста, в заданиях открытого типа дан
		неполный ответ на поставленный
		вопрос, в ответе не присутствуют
		доказательные примеры, текст со
		стилистическими и орфографическими
		ошибками.
Неудовлетворительно		Выполнено 60 % заданий предложенного

4-балльная шкала	Показатели	Критерии
или не зачтено		теста, на поставленные вопросы ответ
		отсутствует или неполный, допущены
		существенные ошибки в теоретическом
		материале (терминах, понятиях).

<u>Критерии оценивания знаний студентов при проведении</u> <u>рубежного контроля</u>

Для оценивания результатов **рубежного контроля** возможно использовать следующие показатели оценивания:

- полнота усвоения материала;
- качество изложения материала;
- правильность выполнения заданий.

Критерии оценки	Бинарная шкала
Содержание ответа соответствует заданным вопросам. Тема вопросов раскрыта, при ответе была использована дополнительная литература. В ответе полно и четко сформированы понятия и определения по теме. Материал ответа систематизирован и структурирован. Ответ отображает навыки по систематизации изученного материала, как основной так дополнительной литературы.	зачтено
Содержание ответа не соответствует заданным вопросам. Тема вопросов не раскрыта. В ответе присутствуют грубые ошибки при формировании понятий и определений по теме. Структура ответа не соответствует объему изученного материала. Ответ не отображает навыков по систематизации изученного материала.	не зачтено